期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Coupling of alloying and interface effects in dendritic Au-doped PtPd alloy/dumbbell-like bismuth telluride heterostructures for ethanol and methanol electrooxidation
1
作者 Ting-Ting Zhou Kai-Yu Dong +1 位作者 Zhe Zheng Qiang Yuan 《Rare Metals》 2025年第5期3119-3129,共11页
Alloying and interface effects are effective strategies for enhancing the performance of electrocatalysts in energy-related devices.Herein,dendritic Au-doped platinum-palladium alloy/dumbbell-like bismuth telluride he... Alloying and interface effects are effective strategies for enhancing the performance of electrocatalysts in energy-related devices.Herein,dendritic Au-doped platinum-palladium alloy/dumbbell-like bismuth telluride heterostructures(denoted PtPdAu/BiTe)were synthesized using a visible-light-assisted strategy.The coupling alloy and interfacial effects of PtPdAu/BiTe significantly improved the performance and stability of both the ethanol oxidation reaction(EOR)and methanol oxidation reaction(MOR).Introducing a small amount of Au effectively enhanced the CO tolerance of PtPdAu/BiTe compared to dendritic platinum-palladium alloy/dumbbell-like bismuth telluride heterostructures.PtPdAu/BiTe exhibited mass activities of 31.5 and 13.3 A·mg_(Pt)^(-1)in EOR and MOR,respectively,which were 34.4 and 13.2 times higher than those of commercial Pt black,revealing efficient Pt atom utilization.In-situ Fourier transform infrared spectroscopy demonstrated complete 12e^(-)and 6e^(-)oxidation of ethanol and methanol on PtPdAu/BiTe.The PtPdAu/BiTe/C achieved mass peak power densities of 131 and 156 mW·mg_(Pt)^(-1),which were 2.4 and 2.2 times higher than those of Pt/C in practical direct ethanol fuel cell(DEFC)and direct methanol fuel cell(DMFC),respectively,highlighting their potential application in DEFC and DMFC.This study introduces an effective strategy for designing efficient and highly CO tolerant anodic electrocatalysts for practical DEFC and DMFC applications. 展开更多
关键词 PtPdAu Alloying and interface effects HETEROSTRUCTURE Methanol and ethanol oxidation Fuel cell
原文传递
Optimization of single crystal surface and interface structures for electrocatalysis
2
作者 Haixiao Hu Haiyan Liang +6 位作者 Xiaoyan Liu Hehe Jiang Moyu Yi Yongzhong Wu Xiaopeng Hao Bin Chang Weijia Zhou 《Materials Reports(Energy)》 2025年第3期1-23,共23页
For emerging renewable and sustainable energy technologies,single crystal materials have become key materials to enhance electrocatalytic performance because of their atomic-level ordered structures and tailorable sur... For emerging renewable and sustainable energy technologies,single crystal materials have become key materials to enhance electrocatalytic performance because of their atomic-level ordered structures and tailorable surface and interfacial properties.Various single crystal types,including metals,semiconductors,ceramics,organics,and nanocrystals,exhibit superior catalytic selectivity and stability in reactions such as water splitting and carbon/nitrogen cycles,benefiting from high electrical conductivity,tunable energy bands,and active sites with high surface energy.Through surface modification,interfacial atomic doping,and heterostructure construction,the distribution of active sites,electronic structure,and mass transport can be precisely regulated,significantly optimizing the catalytic kinetics of single crystal materials.In situ characterizations elucidate catalytic mechanisms at the atomic scale,while emerging methods like AI-assisted synthesis and bio-template directed growth offer pathways to overcome bottlenecks in the precision and cost of single crystal preparation.In addressing stability challenges in complex environments,strategies such as organic-inorganic hybridization and gradient interface design effectively mitigate interfacial instability.Future research should focus on cross-scale structural regulation and multidisciplinary integration to facilitate the transition of single crystal electrocatalysts from fundamental research to industrial applications,enabling efficient energy conversion. 展开更多
关键词 Single crystal materials Single crystal synthesis Surface and interface engineering In situ characterizations ELECTROCATALYSIS
在线阅读 下载PDF
Understanding Electrolytes and Interface Chemistry for Sustainable Nonaqueous Metal-CO_(2)Batteries
3
作者 Bijiao He Yunnian Ge +4 位作者 Fang Zhang Huajun Tian Yan Xin Yong Lei Yang Yang 《Nano-Micro Letters》 2025年第12期74-107,共34页
Metal-carbon dioxide(CO_(2))batteries hold great promise for reducing greenhouse gas emissions and are regarded as one of the most promising energy storage techniques due to their efficiency advantages in CO_(2)recove... Metal-carbon dioxide(CO_(2))batteries hold great promise for reducing greenhouse gas emissions and are regarded as one of the most promising energy storage techniques due to their efficiency advantages in CO_(2)recovery and conversion.Moreover,rechargeable nonaqueous metal-CO_(2)batteries have attracted much attention due to their high theoretical energy density.However,the stability issues of the electrode-electrolyte interfaces of nonaqueous metal-CO_(2)(lithium(Li)/sodium(Na)/potassium(K)-CO_(2))batteries have been troubling its development,and a large number of related research in the field of electrolytes have conducted in recent years.This review retraces the short but rapid research history of nonaqueous metal-CO_(2)batteries with a detailed electrochemical mechanism analysis.Then it focuses on the basic characteristics and design principles of electrolytes,summarizes the latest achievements of various types of electrolytes in a timely manner and deeply analyzes the construction strategies of stable electrode-electrolyte interfaces for metal-CO_(2)batteries.Finally,the key issues related to electrolytes and interface engineering are fully discussed and several potential directions for future research are proposed.This review enriches a comprehensive understanding of electrolytes and interface engineering toward the practical applications of next-generation metal-CO_(2)batteries. 展开更多
关键词 Nonaqueous metal-CO_(2)battery Electrolytes and interface chemistry Mechanism interface engineering Solid electrolyte interface chemistry
在线阅读 下载PDF
AFM and XPS Study on the Surface and Interface States of CuPc and SiO_2 Films
4
作者 陈金伙 王永顺 +2 位作者 朱海华 胡加兴 张福甲 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第8期1360-1366,共7页
A CuPc/SiO2 sample is fabricated. Its morphology is characterized by atomic force microscopy, and the electron states are investigated by X-ray photoelectron spectroscopy. In order to investigate these spectra in deta... A CuPc/SiO2 sample is fabricated. Its morphology is characterized by atomic force microscopy, and the electron states are investigated by X-ray photoelectron spectroscopy. In order to investigate these spectra in detail, all of these spectra are normalized to the height of the most intense peak,and each component is fitted with a single Gaussian function. Analysis shows that the O element has great bearing on the electron states and that SiO2 layers produced by spurting technology are better than those produced by oxidation technology. 展开更多
关键词 CuPc/SiO2 X-ray photoelectron spectroscopy surface and interface analysis
在线阅读 下载PDF
Tunable and improved microwave absorption of flower-like core@shell MFe_(2)O_(4)@MoS_(2)(M=Mn,Ni and Zn)nanocomposites by defect and interface engineering 被引量:7
5
作者 Junxiong Xiao Xiaosi Qi +4 位作者 Xiu Gong Qiong Peng Yanli Chen Ren Xie Wei Zhong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第8期137-146,共10页
Previous results revealed that the defect and/or interface had a great impact on the electromagnetic pa-rameters of materials.In order to understand the main physical mechanisms and effectively utilize these strategie... Previous results revealed that the defect and/or interface had a great impact on the electromagnetic pa-rameters of materials.In order to understand the main physical mechanisms and effectively utilize these strategies,in this study,M Fe_(2)O_(4)and flower-like core@shell M Fe_(2)O_(4)@MoS_(2)(M=Mn,Ni,and Zn)sam-ples with different categories were elaborately designed and selectively produced in large scale through a simple two-step hydrothermal reaction.We conducted the systematical investigation on their microstruc-tures,electromagnetic parameters and microwave absorption performances(MAPs).The obtained results revealed that the large radius of M^(2+)cation could effectively boost the concentration of oxygen vacancy in the M Fe_(2)O_(4)and M Fe_(2)O_(4)@MoS_(2)samples,which resulted in the improvement of dielectric loss capabil-ities and MAPs.Furthermore,the introduction of MoS_(2)nanosheets greatly improved the interfacial effect and enhanced the polarization loss capabilities,which also boosted the MAPs.By taking full advantage of the defect and interface,the designed M Fe_(2)O_(4)@MoS_(2)samples displayed tunable and excellent com-prehensive MAPs including strong absorption capability,wide absorption bandwidth and thin matching thicknesses.Therefore,the clear understanding of defect and interface engineering made these strategies well elaborately designed and applicable to improving MAPs. 展开更多
关键词 Core@shell structure M Fe_(2)O_(4)@MoS_(2)(M=Mn Ni and Zn) Defect and interface engineering Improved microwave absorption properties
原文传递
The Creative Design Research of Product Appearance Based on Human-machine Interaction and Interface 被引量:1
6
作者 WANG Zheng, HE Wei-ping, ZHANG Ding-hua, YU Sui-huai, CAI Hong-ming (Contemporary Design and Integrated Manufacturing Technology Laboratory , Northwestern Polytechnical University, Xi’an 710072, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期152-153,共2页
Today’s product creative design has rendered many fe atures and has brought a great change in our everyday life, there are many new c hallenges in its traditional theory and principle. According to the traditional de... Today’s product creative design has rendered many fe atures and has brought a great change in our everyday life, there are many new c hallenges in its traditional theory and principle. According to the traditional design theory, the FBS design model pays more attention to the function and stru cture of the product. But this model still couldn’t strengthen the relation bet ween product appearance design and human-machine design effectively. This paper adopt converse design thinking and presents an improved design thinking methodo logy based on C: FBS for product appearance design and give a general summarizat ion for the features, methods and technology based on human-machine interaction and interface. Meanwhile it also combines with the behavior design of product r elated IT fields and constructs a new outline to improve the design of product a ppearance supported by the technology of computer aided design. So the new metho d about design thinking for computer aided design, the new abstract product design model and the key problem of design thinking based on human-machine inte raction and interface are addressed in this paper. This kind of creative design theory that is driven by human-machine interaction and interface will help the development of CAD software system and the research of product design and manufa cture. Additionally, this paper gives some beneficial characters to address the theory based on human-machine interaction and interface. Meanwhile, combining with the developing of computer technology, the trends of design thinking based on t he technology of human-machine interaction and interface are also analyzed and discussed at the end of this paper. 展开更多
关键词 C:FBS model product appearance design human-ma chine interaction and interface(HMI&I) computer aided design(CAD)
在线阅读 下载PDF
Dual bulk and interface engineering with ionic liquid for enhanced performance of ambient-processed inverted CsPbI 3 perovskite solar cells
7
作者 Kun Wang Zeyuan Su +9 位作者 Yali Chen Heng Qi Ting Wang Hao Wang Youqian Zhang Li Cao Qian Ye Fobao Huang Yu Tong Hongqiang Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第19期165-171,共7页
All-inorganic cesium lead iodide(CsPbI_(3))perovskites with superior thermal stability are attractive candidates for perovskite solar cells(PSCs).Fabricating such inorganic PSCs in the ambient atmosphere is desirable ... All-inorganic cesium lead iodide(CsPbI_(3))perovskites with superior thermal stability are attractive candidates for perovskite solar cells(PSCs).Fabricating such inorganic PSCs in the ambient atmosphere is desirable for practical production,however,the challenge remains in inhibiting the phase transition of CsPbI_(3) in ambient air.Herein,we demonstrate a dual bulk and interface engineering using ionic liquid to stabilize CsPbI_(3) perovskite structure,thus enhancing the performance of ambient-processed inverted CsPbI_(3) PSCs.Such dual bulk and interface engineering is found effective not only in suppressing the bulk and interfacial charge carrier recombination and enhancing charge carrier transport and extraction,but also in protecting CsPbI_(3) crystal structure by leaving hydrophobic alkyl chains coverage at the boundary and surface to prevent phase transition caused by moisture from ambient air.The optimized device fully processed in the open air with relative humidity up to 55%exhibits remarkably enhanced efficiency and stability over the control device,with the efficiency increasing from 8.6%to 13.21%,and 92%efficiency maintaining after storage for 1680 h,which outperforms the control device with only 82%retaining after 648 h storage.We thus believe this work can provide an efficient alternative for the low-cost fabrication of ambient-processible PSCs. 展开更多
关键词 CsPbI 3 Ionic liquid Bulk and interface Ambient-processed Inverted solar cells
原文传递
Edge effect and interface confinement modulated strain distribution and interface adhesion energy in graphene/Si system
8
作者 Ying-Di Huang Jia-Ting Xie +1 位作者 Su-Mei Hu Yan He 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第1期122-127,共6页
In order to clarify the edge and interface effect on the adhesion energy between graphene(Gr)and its substrate,a theoretical model is proposed to study the interaction and strain distribution of Gr/Si system in terms ... In order to clarify the edge and interface effect on the adhesion energy between graphene(Gr)and its substrate,a theoretical model is proposed to study the interaction and strain distribution of Gr/Si system in terms of continuum medium mechanics and nanothermodynamics.We find that the interface separation and adhesion energy are determined by the thickness of Gr and substrate.The disturbed interaction and redistributed strain in the Gr/Si system induced by the effect of surface and interface can make the interface adhesion energy decrease with increasing thickness of Gr and diminishing thickness of Si.Moreover,our results show that the smaller area of Gr is more likely to adhere to the substrate since the edge effect improves the active energy and strain energy.Our predictions can be expected to be a guide for designing high performance of Grbased electronic devices. 展开更多
关键词 GRAPHENE edge effect and interface confinement strain distribution adhesion energy
原文传递
STRUCTURE AND INTERFACE PROPERTIES OF Fe/C MULTILAYERS
9
作者 Cui Jingbiao, Zhang Ligong Fang Rongchan Department of Physics and Laboratory of Structure Analysis, University of Science and Technology of China, Hefei 230026, China 《真空科学与技术学报》 EI CAS CSCD 1992年第Z1期251-254,共4页
Fe/C multilayer thin films were deposited by magnetron sputtering. Small angle X-ray diffraction measurements show very well periodicity of the samples. The modulation period determined from a modified Bragg equation ... Fe/C multilayer thin films were deposited by magnetron sputtering. Small angle X-ray diffraction measurements show very well periodicity of the samples. The modulation period determined from a modified Bragg equation agrees well with that determined from deposition rate. The interfacial roughness parameter ξof several samples calculated by X-ray diffraction is between 3.5(?) and 5.6(?). 展开更多
关键词 FE STRUCTURE and interface PROPERTIES OF Fe/C MULTILAYERS very
在线阅读 下载PDF
The Numerical Analysis of Strain Behavior at Solder Joint and Interface of Flip Chip Package
10
作者 S C Chen Y C Lin 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期186-188,共3页
The flip chip package is a kind of advanced electri ca l packages. Due to the requirement of miniaturization, lower weight, higher dens ity and higher performance in the advanced electric package, it is expected that ... The flip chip package is a kind of advanced electri ca l packages. Due to the requirement of miniaturization, lower weight, higher dens ity and higher performance in the advanced electric package, it is expected that flip chip package will soon be a mainstream technology. The silicon chip is dir ectly connected to printing circuit substrate by SnPb solder joints. Also, the u nderfill, a composite of polymer and silica particles, is filled in the gap betw een the chip and substrate around the solder joints to improve the reliabili ty of solder joints. When flip chip package specimen is tested with thermal cycl ing, the cyclic stress/strain response that exists at the underfill interfaces and solder joints may result in interfacial crack initiation and propagation. Therefore, the chip cracking and the interfacial delamination between underfill and chip corner have been investigated in many studies. Also, most researches h ave focused on the effect of fatigue and creep properties of solder joint induce d by the plastic strain alternation and accumulation. The nuderfill must have lo w viscosity in the liquid state and good adhesion to the interface after solidif ying. Also, the mechanical behavior of such epoxy material has much dependen ce on temperature in its glass transition temperature range that is usually cove red by the temperature range of thermal cycling test. Therefore, the materia l behavior of underfill exists a significant non-linearity and the assumption o f linear elastic can lack for accuracy in numerical analysis. Through numerical analysis, this study had some comparisons about the effect of linear and non -linear properties of underfill on strain behaviors around the interface of fli p chip assembly. Especially, the deformation tendency inside solder bumps could be predicted. Also, it is worthily mentioned that we have pointed out which comp onent of plastic strain, thus, either normal or shear, has dominant influence to the fatigue and creep of solder bump, which have not brought up before. About the numerical analysis to the thermal plastic strain occurs in flip chip i nterconnection during thermal cycling test, a commercial finite element software , namely, ANSYS, was employed to simulate the thermal cycling test obeyed by MIL-STD-883C. The temperatures of thermal cycling ranged from -55 ℃ to 125 ℃ with ramp rate of 36 ℃/min and a dwell time of 25 min at peak temperature. T he schematic drawing of diagonal cross-section of flip chip package composed of FR-4 substrate, silicon chip, underfill and solder bump was shown as Fig.1. Th e numerical model was two-dimensional (2-D) with plane strain assumption and o nly one half of the cross-section was modeled due to geometry symmetry. The dim ensions and boundary conditions of numerical model were shown in Fig.2. The symm etric boundary conditions were applied along the left edge of the model, and the left bottom corner was additional constrained in vertical direction to prevent body motion. The finite element meshes of overall and local numerical model was shown as Fig.3. In this study, two cases of material model were used to describe the material behavior of the underfill: the case1 was linear elastic model that assumed Young’s Modulus (E) and thermal expansion coefficient (CTE) were consta nt during thermal cycling; the case2 was MKIN model (in ANSYS) that had nonlinea r temperature-dependent stress-strain relationship and temperature-dependent CTE. The material model applied to the solder bump was ANAND model (in ANSYS) th at described time-dependent plasticity phenomenon of viscoplastic material. Bot h the FR-4 substrate and silicon chip were assumed as temperature-independent elastic material; moreover, FR-4 substrate is orthotropic while silicon chip is isotropic. From the comparison between numerical results of linear and nonlinear material a ssumption of underfill, (i.e. case1 and case2), the quantities of plastic strain around the interconnection from case1 are higher than that in case2. Thus, the linear 展开更多
关键词 The Numerical Analysis of Strain Behavior at Solder Joint and interface of Flip Chip Package
在线阅读 下载PDF
Defect and interface engineering in core@shell structure hollow carbon@MoS_(2)nanocomposites for boosted microwave absorption performance 被引量:8
11
作者 Junxiong Xiao Xiaosi Qi +4 位作者 Xiu Gong Qiong Peng Yanli Chen Ren Xie Wei Zhong 《Nano Research》 SCIE EI CSCD 2022年第9期7778-7787,共10页
Defect and interface engineering are efficient approaches to adjust the physical and chemical properties of nanomaterials.In order to effectively utilize these strategies for the improvement of microwave absorption pr... Defect and interface engineering are efficient approaches to adjust the physical and chemical properties of nanomaterials.In order to effectively utilize these strategies for the improvement of microwave absorption properties(MAPs),in this study,we reported the synthesis of hollow carbon shells and hollow carbon@MoS_(2)nanocomposites by the template-etching and templateetching-hydrothermal methods,respectively.The obtained results indicated that the degree of defect for hollow carbon shells and hollow carbon@MoS_(2)could be modulated by the thickness of hollow carbon shell,which effectively fulfilled the optimization of electromagnetic parameters and improvement of MAPs.Furthermore,the microstructure investigations revealed that the precursor of hollow carbon shells was encapsulated by the sheet-like MoS_(2)in high efficiency.And the introduction of MoS_(2)nanosheets acting as the shell effectively improved the interfacial effects and boosted the polarization loss capabilities,which resulted in the improvement of comprehensive MAPs.The elaborately designed hollow carbon@MoS_(2)samples displayed very outstanding MAPs including strong absorption capabilities,broad absorption bandwidth,and thin matching thicknesses.Therefore,this work provided a viable strategy to improve the MAPs of microwave absorbers by taking full advantage of their defect and interface engineering. 展开更多
关键词 core@shell structure hollow carbon shells hollow carbon@MoS_(2) defect and interface engineering improved microwave absorption properties
原文传递
Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis:Dimensionality and interface engineering 被引量:6
12
作者 Xiaorong Gan Dangyuan Lei +2 位作者 Ruquan Ye Huimin Zhao Kwok-Yin Wong 《Nano Research》 SCIE EI CAS CSCD 2021年第6期2003-2022,共20页
Two-dimensional(2D)transition metal dichalcogenides(TMDCs)are emerging as promising building blocks of high-performance photocatalysts for visible-light-driven water splitting because of their unique physical,chemical... Two-dimensional(2D)transition metal dichalcogenides(TMDCs)are emerging as promising building blocks of high-performance photocatalysts for visible-light-driven water splitting because of their unique physical,chemical,electronic,and optical properties.This review focuses on the fundamentals of 2D TMDC-based mixed-dimensional heterostructures and their unique properties as visible-light-driven photocatalysts from the perspective of dimensionality and interface engineering.First,we discuss the approaches and advantages of surface modification and functionalization of 2D TMDCs for photocatalytic water splitting under visible-light illumination.We then classify the strategies for improving the photocatalytic activity of 2D TMDCs via combination with various low-dimensional nanomaterials to form mixed-dimensional heterostructures.Further,we highlight recent advances in the use of these mixed-dimensional heterostructures as high-efficiency visible-light-driven photocatalysts,particularly focusing on synthesis routes,modification approaches,and physiochemical mechanisms for improving their photoactivity.Finally,we provide our perspectives on future opportunities and challenges in promoting real-world photocatalytic applications of 2D TMDC-based heterostructures. 展开更多
关键词 two-dimensional semiconductors transition metal dichalcogenides mixed-dimensional heterostructures solar photocatalysis dimensionality and interface engineering
原文传递
Surface and interface chemistry in metal‐free electrocatalysts for electrochemical CO_(2) reduction 被引量:8
13
作者 Wei Zhang Baohua Jia +1 位作者 Xue Liu Tianyi Ma 《SmartMat》 2022年第1期5-34,共30页
The electrochemical reduction of carbon dioxide(CO_(2))into value‐added fuels and chemicals presents a sustainable route to alleviate CO_(2) emissions,promote carbon‐neutral cycles and reduce the dependence on fossi... The electrochemical reduction of carbon dioxide(CO_(2))into value‐added fuels and chemicals presents a sustainable route to alleviate CO_(2) emissions,promote carbon‐neutral cycles and reduce the dependence on fossil fuels.Considering the thermodynamic stability of the CO_(2) molecule and sluggish reaction kinetics,it is still a challenge to design highly efficient electrocatalysts for the CO_(2) reduction reaction(CO_(2)RR).It has been found that the surface and interface chemistry of electrocatalysts can modulate the electronic structure and increase the active sites,which is favorable for CO_(2) adsorption,electron transfer,mass transport,and optimizing adsorption strength of reaction intermediates.However,the effect of surface and interface chemistry on metal‐free electrocatalysts(MFEs)for CO_(2)RR has not been comprehensively reviewed.Herein,we discuss the importance of the surface and interface chemistry on MFEs for improving the electrochemical CO_(2)RR performance based on thermodynamic and kinetic views.The fundamentals and challenges of CO_(2)RR are firstly presented.Then,the recent advances of the surface and interface chemistry in improving reaction rate and overcoming reaction constraints are reviewed from regulating electronic structure,active sites,electron transfer,mass transport,and intermediate binding energy.Finally,the research challenges and prospects are proposed to suggest the future designs of advanced MFEs in CO_(2)RR. 展开更多
关键词 electrochemical CO_(2)reduction reaction metal‐free electrocatalysts surface and interface chemistry
原文传递
In situ photoemission study of interface and film formation during epitaxial growth of Er_2O_3 film on Si(001) substrate
14
作者 朱燕艳 方泽波 +2 位作者 刘永生 廖灿 陈圣 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第6期775-777,共3页
Synchrotron radiation photoemission spectroscopy was used to study the formation process of Er2O3/Si(001) imerface and film during epitaxial growth on Si. A shift in the O core-level binding energy was found accompa... Synchrotron radiation photoemission spectroscopy was used to study the formation process of Er2O3/Si(001) imerface and film during epitaxial growth on Si. A shift in the O core-level binding energy was found accompanied by a shift in the Er2O3 valence band maximum. This shift depended on the oxide layer thickness and interfacial structure. An interfacial layer was observed at the initial growth of Er2O3 film on Si, which was supposed to be attributed to the effect of Er atom catalytic oxidation effect. 展开更多
关键词 high-κ oxides surface and interface chemistry rare earths
在线阅读 下载PDF
Trends in Sequence-Defined Polyelectrolyte Systems:A Perspective
15
作者 Qiu-Hui Chang Ruo-Chao Wang +1 位作者 Le-Ying Qing Jian Jiang 《Chinese Journal of Polymer Science》 2025年第1期1-17,I0005,共18页
Polyelectrolytes(PEs)are polymers carrying ionizable groups along the chain backbone and play an important role in life and environmental sciences,industrial applications and other fields.Due to the complicated topolo... Polyelectrolytes(PEs)are polymers carrying ionizable groups along the chain backbone and play an important role in life and environmental sciences,industrial applications and other fields.Due to the complicated topological structure and electrostatic correlations of PEs,PEs exhibit very rich phase behavior and morphologies in both bulk and confined solutions.So far,many theories,simulations and machine learning approaches have been proposed to study the behavior of polyelectrolyte solutions,especially the intrinsic structure-property relationships.In this perspective,from a personal point of view,we present several recent trends in polyelectrolyte solutions.The main themes considered here are accelerated development of sequence-defined polyelectrolyte(SDPE)via artificial intelligence technology,liquid-liquid phase separation in bulk SDPE solutions,adsorption behaviors of SDPE in the vicinity of a single dielectric surface,and surface forces between two charged surfaces mediated by SDPE solutions. 展开更多
关键词 Sequence-defined polyelectrolyte Structure-property relationships Liquid-liquid phase separation Surface and interface
原文传递
Microstructure and mechanical properties of hot isostatically pressed cermets with TiN coatings 被引量:3
16
作者 ZHENG Liyun XIONG Weihao +1 位作者 YAN Xianmei LI Guo'an 《Rare Metals》 SCIE EI CAS CSCD 2006年第6期643-648,共6页
To increase the adhesion strength between the coating and the substrate, sintered Ti(C,N)-based cermets were selected and deposited with monolayer TiN using a multiarc ion-plating technique; subsequently, hot isosta... To increase the adhesion strength between the coating and the substrate, sintered Ti(C,N)-based cermets were selected and deposited with monolayer TiN using a multiarc ion-plating technique; subsequently, hot isostatic pressing (HIPhag) treatment was performed at 1000℃ using nitrogen pressure up to 110 MPa. The mechanical properties of cermets after a coating process and subsequent HIPing treatment have been evaluated with respect to the hardness, the residual stress, and the coating adhesion. The results show that atter the HIPing process, there was a higher increase ha critical load ha the TiN-coated cermets with lower surface roughness compared with those with higher surface roughness. In all cases, the residual stress was found to be compressive. The effects of substrate surface roughness and posttreatment on the adhesion strength of the coatings were thus investigated. It was also fotmd that the HIPing posttreatment process is well suited for hacreasing the adhesion strength between the coating and the substrate. 展开更多
关键词 materials surface and interface coating adhesion hot isostatic pressing cermets
在线阅读 下载PDF
Corrosion behavior of tantalum and its nitride in alkali solution 被引量:1
17
作者 ZHANGDeyuan LINQin +3 位作者 FEIQinyong ZHAOHaomin KANGGuangyu GENGMan 《Rare Metals》 SCIE EI CAS CSCD 2003年第4期276-279,共4页
The corrosion behavior of tantalum and its nitrides in stirring NaOHsolutions was researched by potentiostatic method, cyclic voltammetry and XPS. The results showedthat the corrosion products were composed of Ta_2O_5... The corrosion behavior of tantalum and its nitrides in stirring NaOHsolutions was researched by potentiostatic method, cyclic voltammetry and XPS. The results showedthat the corrosion products were composed of Ta_2O_5 and NaTaO_3. The corrosion reaction formula oftantalum and its nitrides was written according to cyclic volt-ampere curves. The electric chargetransfer coefficient and the electric charge transfer number were calculated 展开更多
关键词 surface and interface of materials CORROSION ELECTROCHEMISTRY TANTALUM NITRIDE
在线阅读 下载PDF
Uniform, fast, and reliable CMOS compatible resistive switching memory 被引量:1
18
作者 Yunxia Hao Ying Zhang +7 位作者 Zuheng Wu Xumeng Zhang Tuo Shi Yongzhou Wang Jiaxue Zhu Rui Wang Yan Wang Qi Liu 《Journal of Semiconductors》 EI CAS CSCD 2022年第5期109-115,共7页
Resistive switching random access memory(RRAM) is considered as one of the potential candidates for next-generation memory. However, obtaining an RRAM device with comprehensively excellent performance, such as high re... Resistive switching random access memory(RRAM) is considered as one of the potential candidates for next-generation memory. However, obtaining an RRAM device with comprehensively excellent performance, such as high retention and endurance, low variations, as well as CMOS compatibility, etc., is still an open question. In this work, we introduce an insert TaO_(x) layer into HfO_(x)-based RRAM to optimize the device performance. Attributing to robust filament formed in the TaO_(x) layer by a forming operation, the local-field and thermal enhanced effect and interface modulation has been implemented simultaneously. Consequently, the RRAM device features large windows(> 10^(3)), fast switching speed(-10 ns), steady retention(> 72h), high endurance(> 10^(8) cycles), and excellent uniformity of both cycle-to-cycle and device-to-device. These results indicate that inserting the TaO_(x) layer can significantly improve HfO_(x)-based device performance, providing a constructive approach for the practical application of RRAM. 展开更多
关键词 UNIFORMITY resistance switching field enhance layer thermal enhance layer and interface modulation
在线阅读 下载PDF
Positron Affinity, Deformation Potential and Diffusion Constant in AlxIn1-xSb Ternary Semiconductor Alloys
19
作者 Nour EI-Houda Fares Nadir Bouarissa 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第7期661-667,共7页
The present investigation deals with the positron behaviour in Alxlnl_xSb ternary semiconductor alloys in the zinc-blende phase. The calculations are mainly based on a pseudopotential approach coupled with the indepen... The present investigation deals with the positron behaviour in Alxlnl_xSb ternary semiconductor alloys in the zinc-blende phase. The calculations are mainly based on a pseudopotential approach coupled with the independent particle model. Features such as elastic constants, electron and positron chemical potentials, positron deformation potential and positron diffusion constant are determined. Moreover, the positron affinity to InSb, A1Sb and their related ternary alloys and heterostructures is calculated. The present results are compared to experiment and found to be in reasonably good agreement. The information gathered from the present study can help in understanding the positron trapping at interfaces and precipitates and might be useful in slow-positron-beam experiments. 展开更多
关键词 Semiconductor alloys Positrons DIFFUSION Surface and interface states HETEROSTRUCTURES
原文传递
Detection and formation mechanism of micro-defects in ultrafine pitch Cu-Cu direct bonding
20
作者 刘子玉 蔡坚 +1 位作者 王谦 陈瑜 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期802-808,共7页
In this paper, Cu-Cu interconnects with ultrafine pad pitches of 6 p.m, 8 p.m, and 15 p.m are implemented on the 12 inch wafers by a direct bonding process. Defects are not found by traditional non-destructive (NDT)... In this paper, Cu-Cu interconnects with ultrafine pad pitches of 6 p.m, 8 p.m, and 15 p.m are implemented on the 12 inch wafers by a direct bonding process. Defects are not found by traditional non-destructive (NDT) c-mode scanning acoustic microscopy (c-SAM). However, cross sectional observation of bonding interfaces reveals that micro-defects such as micro seams are located at SiO2 bonding interfaces. In order to examine the micro-defects in the ultra-fine pitch direct bonding process by the NDT technology, a novel "defect-enlarged approach" is proposed. The bonded dies are first annealed in an N2 oven at 300 ℃ for a few hours and then cooled quickly in air. The c-SAM scanning images show large defects at the place where nothing can be detected by c-SAM before this treatment. Cross sectional observation of the bonding interfaces indicates that these defects consist of large size micro seams at the SiO2 bonding interface, especially near Cu pads with an ultrafine pitch of 6μm. However, these large defects disappear after several hours at room temperature, observed by c-SAM. It is inferred that the disappearance of these defects inspected by the "defect-enlarged approach" results from the combination of intrinsic micro seams and "weak" bonds in the silicon oxide layer. Then the underlying physical mechanism of these micro-defects is proposed, which is influenced by Cu pad surface topology and bonding models. 展开更多
关键词 nondestructive testing of materials microscopy acoustical surface and interface
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部