For mobile anchor node static path planning cannot accord the actual distribution of node for dynamic adjustment. We take advantage of the high localization accuracy and low computational complexity of ad-hoc localiza...For mobile anchor node static path planning cannot accord the actual distribution of node for dynamic adjustment. We take advantage of the high localization accuracy and low computational complexity of ad-hoc localization system( AHLos)algorithm. This article introduces mobile anchor nodes instead of the traditional fixed anchor nodes to improve the algorithm. The result shows that, through introduce the mobile anchor node, the information of initial anchor nodes can be configured more flexible.Meanwhile,with the use of the approximate location and the transition path,the distance and energy consumption of the mobile anchor node is greatly reduced.展开更多
At present, most underwater positioning algorithms improve the positioning accuracy by increasing the number of anchor nodes which resulting in the increasing energy consumption. To solve this problem, the paper propo...At present, most underwater positioning algorithms improve the positioning accuracy by increasing the number of anchor nodes which resulting in the increasing energy consumption. To solve this problem, the paper proposes a localization algorithm assisted by mobile anchor node and based on region determination(LMRD), which not only improves the positioning accuracy of nodes positioning but also reduces the energy consumption. This algorithm is divided into two stages: region determination stage and location positioning stage. In the region determination stage, the target region is divided into several sub-regions by the region division strategy with the smallest overlap rate which can reduce the number of virtual anchor nodes and lock the target node to a sub-region, and then through the planning of mobile nodes to optimize the travel path, reduce the moving distance, and reduce system energy consumption. In the location positioning stage, the target node location can be calculated using the HILBERT path planning and trilateration. The simulation results show that the proposed algorithm can improve the positioning accuracy when the energy consumption is reduced.展开更多
Mobile anchors are widely used for localization in WSNs.However,special properties over 3D terrains limit the implementation of them.In this paper,a novel 3D localization algorithm is proposed,called 3 DT-PP,which uti...Mobile anchors are widely used for localization in WSNs.However,special properties over 3D terrains limit the implementation of them.In this paper,a novel 3D localization algorithm is proposed,called 3 DT-PP,which utilizes path planning of mobile anchors over complex 3 D terrains,and simulations based upon the model of mountain surface network are conducted.The simulation results show that the algorithm decreases the position error by about 91%,8.7%and lowers calculation overhead by about 75%,1.3%,than the typical state-of-the-art localization algorithm(i.e.,'MDS-MAP','Landscape-3D').Thus,our algorithm is more potential in practical WSNs which are the characteristic of limited energy and 3D deployment.展开更多
In recent times,wireless sensor network(WSN)finds their suitability in several application areas,ranging from military to commercial ones.Since nodes in WSN are placed arbitrarily in the target field,node localization...In recent times,wireless sensor network(WSN)finds their suitability in several application areas,ranging from military to commercial ones.Since nodes in WSN are placed arbitrarily in the target field,node localization(NL)becomes essential where the positioning of the nodes can be determined by the aid of anchor nodes.The goal of any NL scheme is to improve the localization accuracy and reduce the localization error rate.With this motivation,this study focuses on the design of Intelligent Aquila Optimization Algorithm Based Node Localization Scheme(IAOAB-NLS)for WSN.The presented IAOAB-NLS model makes use of anchor nodes to determine proper positioning of the nodes.In addition,the IAOAB-NLS model is stimulated by the behaviour of Aquila.The IAOAB-NLS model has the ability to accomplish proper coordinate points of the nodes in the network.For guaranteeing the proficient NL process of the IAOAB-NLS model,widespread experimentation takes place to assure the betterment of the IAOAB-NLS model.The resultant values reported the effectual outcome of the IAOAB-NLS model irrespective of changing parameters in the network.展开更多
To alleviate the localization error introduced by irregular sensor network deployment, a new mo bile path localization based on key nodes (MPLPK) protocol is proposed. It can recognize all con cave/convex nodes in t...To alleviate the localization error introduced by irregular sensor network deployment, a new mo bile path localization based on key nodes (MPLPK) protocol is proposed. It can recognize all con cave/convex nodes in the network as fixed anchor nodes, and simplify the following localization process based on these key nodes. The MPLPK protocol is composed of three steps. After all key nodes are found in the network, a mobile node applying improved minimum spanning tree (MST) algorithm is introduced to traverse and locate them. By taking the concave/convex nodes as anchors, the complexity of the irregular network can be degraded. And the simulation results demonstrate that MPEPK has 20% to 40% accuracy improvements than connectivity-based and anchor-free three-di- mensional localization (CATL) and approximate convex decomposition based localization (ACDL).展开更多
针对室内节点获取位置信息困难问题,研究了分布式自组织扩散和精度补偿算法.该算法基于距离到达时间差(time difference of arrival,TDOA)室内外一体定位实现位置信息从室外锚节点向室内待定位节点的分布式自组织扩散,再提出基于多维尺...针对室内节点获取位置信息困难问题,研究了分布式自组织扩散和精度补偿算法.该算法基于距离到达时间差(time difference of arrival,TDOA)室内外一体定位实现位置信息从室外锚节点向室内待定位节点的分布式自组织扩散,再提出基于多维尺度变换(multi-dimensional scaling,MDS)精度补偿方法解决误差扩散的问题和区域定位增强方法解决锚节点分布过于集中的问题,有效提高了定位精度.仿真结果表明该方法在成本低廉和设备便携的基础上实现室内节点的精准定位.展开更多
提出了一种MCBN(Monte Carlo loca liza tion boxed using non-anchor)定位算法。该算法建立在蒙特卡罗定位算法基础之上,利用两跳范围内可信任度权值最小且坐标确定的静态非锚节点,辅助网络中两跳范围内的锚节点构建最小锚盒,同时利用...提出了一种MCBN(Monte Carlo loca liza tion boxed using non-anchor)定位算法。该算法建立在蒙特卡罗定位算法基础之上,利用两跳范围内可信任度权值最小且坐标确定的静态非锚节点,辅助网络中两跳范围内的锚节点构建最小锚盒,同时利用待定位节点上一时刻的位置信息和临时锚节点的特性增强样本过滤条件,进行快速抽样和样本过滤。仿真结果表明:MCBN同MCL和MCB算法相比,提高了节点定位精度,降低了节点能量损耗。展开更多
基金National Natural Science Foundations of China(Nos.U1162202,61203157)the Fundamental Research Funds for the Central Universities and Shanghai Leading Academic Discipline Project,China(No.B504)
文摘For mobile anchor node static path planning cannot accord the actual distribution of node for dynamic adjustment. We take advantage of the high localization accuracy and low computational complexity of ad-hoc localization system( AHLos)algorithm. This article introduces mobile anchor nodes instead of the traditional fixed anchor nodes to improve the algorithm. The result shows that, through introduce the mobile anchor node, the information of initial anchor nodes can be configured more flexible.Meanwhile,with the use of the approximate location and the transition path,the distance and energy consumption of the mobile anchor node is greatly reduced.
基金supported by National Natural Science Foundation of China (Nos. U1806201, 61671261)Key Research and Development Program of Shandong Province (No. 2016GGX101007)+1 种基金China Postdoctoral Science Foundation (No. 2017T100490)University Science and Technology Planning Project of Shandong Province (Nos. J17KA058, J17KB154)
文摘At present, most underwater positioning algorithms improve the positioning accuracy by increasing the number of anchor nodes which resulting in the increasing energy consumption. To solve this problem, the paper proposes a localization algorithm assisted by mobile anchor node and based on region determination(LMRD), which not only improves the positioning accuracy of nodes positioning but also reduces the energy consumption. This algorithm is divided into two stages: region determination stage and location positioning stage. In the region determination stage, the target region is divided into several sub-regions by the region division strategy with the smallest overlap rate which can reduce the number of virtual anchor nodes and lock the target node to a sub-region, and then through the planning of mobile nodes to optimize the travel path, reduce the moving distance, and reduce system energy consumption. In the location positioning stage, the target node location can be calculated using the HILBERT path planning and trilateration. The simulation results show that the proposed algorithm can improve the positioning accuracy when the energy consumption is reduced.
基金Supported by the Important National Science and Technology Specific Project of China(No.20112X03002-002-03)the National NatureScience Foundation of China(No.61133016,61163066)
文摘Mobile anchors are widely used for localization in WSNs.However,special properties over 3D terrains limit the implementation of them.In this paper,a novel 3D localization algorithm is proposed,called 3 DT-PP,which utilizes path planning of mobile anchors over complex 3 D terrains,and simulations based upon the model of mountain surface network are conducted.The simulation results show that the algorithm decreases the position error by about 91%,8.7%and lowers calculation overhead by about 75%,1.3%,than the typical state-of-the-art localization algorithm(i.e.,'MDS-MAP','Landscape-3D').Thus,our algorithm is more potential in practical WSNs which are the characteristic of limited energy and 3D deployment.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work underGrant Number(RGP 1/322/42)PrincessNourah bint Abdulrahman UniversityResearchers Supporting Project number(PNURSP2022R303)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘In recent times,wireless sensor network(WSN)finds their suitability in several application areas,ranging from military to commercial ones.Since nodes in WSN are placed arbitrarily in the target field,node localization(NL)becomes essential where the positioning of the nodes can be determined by the aid of anchor nodes.The goal of any NL scheme is to improve the localization accuracy and reduce the localization error rate.With this motivation,this study focuses on the design of Intelligent Aquila Optimization Algorithm Based Node Localization Scheme(IAOAB-NLS)for WSN.The presented IAOAB-NLS model makes use of anchor nodes to determine proper positioning of the nodes.In addition,the IAOAB-NLS model is stimulated by the behaviour of Aquila.The IAOAB-NLS model has the ability to accomplish proper coordinate points of the nodes in the network.For guaranteeing the proficient NL process of the IAOAB-NLS model,widespread experimentation takes place to assure the betterment of the IAOAB-NLS model.The resultant values reported the effectual outcome of the IAOAB-NLS model irrespective of changing parameters in the network.
基金Supported by the National Natural Science Foundation of China(No.61133016)the Sichuan Science and Technology Support Project(No.2013GZ0022)+1 种基金the Scientific Research Fund of Xinjiang Provincial Education Department(No.XJEDU2013128)the Technology Supporting Xinjiang Project(No.201491121)
文摘To alleviate the localization error introduced by irregular sensor network deployment, a new mo bile path localization based on key nodes (MPLPK) protocol is proposed. It can recognize all con cave/convex nodes in the network as fixed anchor nodes, and simplify the following localization process based on these key nodes. The MPLPK protocol is composed of three steps. After all key nodes are found in the network, a mobile node applying improved minimum spanning tree (MST) algorithm is introduced to traverse and locate them. By taking the concave/convex nodes as anchors, the complexity of the irregular network can be degraded. And the simulation results demonstrate that MPEPK has 20% to 40% accuracy improvements than connectivity-based and anchor-free three-di- mensional localization (CATL) and approximate convex decomposition based localization (ACDL).
文摘针对室内节点获取位置信息困难问题,研究了分布式自组织扩散和精度补偿算法.该算法基于距离到达时间差(time difference of arrival,TDOA)室内外一体定位实现位置信息从室外锚节点向室内待定位节点的分布式自组织扩散,再提出基于多维尺度变换(multi-dimensional scaling,MDS)精度补偿方法解决误差扩散的问题和区域定位增强方法解决锚节点分布过于集中的问题,有效提高了定位精度.仿真结果表明该方法在成本低廉和设备便携的基础上实现室内节点的精准定位.
文摘提出了一种MCBN(Monte Carlo loca liza tion boxed using non-anchor)定位算法。该算法建立在蒙特卡罗定位算法基础之上,利用两跳范围内可信任度权值最小且坐标确定的静态非锚节点,辅助网络中两跳范围内的锚节点构建最小锚盒,同时利用待定位节点上一时刻的位置信息和临时锚节点的特性增强样本过滤条件,进行快速抽样和样本过滤。仿真结果表明:MCBN同MCL和MCB算法相比,提高了节点定位精度,降低了节点能量损耗。