Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference...Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.展开更多
In this article, the authors study the exact traveling wave solutions of modified Zakharov equations for plasmas with a quantum correction by hyperbolic tangent function expansion method, hyperbolic secant expansion m...In this article, the authors study the exact traveling wave solutions of modified Zakharov equations for plasmas with a quantum correction by hyperbolic tangent function expansion method, hyperbolic secant expansion method, and Jacobi elliptic function ex- pansion method. They obtain more exact traveling wave solutions including trigonometric function solutions, rational function solutions, and more generally solitary waves, which are called classical bright soliton, W-shaped soliton, and M-shaped soliton.展开更多
Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and eve...Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and even in quantum mechanics. But all these equations are most often studied without worrying about what would happen if this equation were maintained, that is to say, had a second member synonymous with an external force. It is true that on a physical level, such equations can be considered as describing the generation of waves on a waveguide using an external force. However, the in-depth analysis of this aspect is not at the center of our reflection in this article, but for us, it is a question of proposing exact solutions to this type of equation and above all proposing the general form of the external force so that the obtaining exact solutions is possible.展开更多
In this paper, the dispersive long wave equation is studied by Lie symmetry group theory. Firstly, the Lie symmetries of this system are calculated. Secondly, one dimensional optimal systems of Lie algebra and all the...In this paper, the dispersive long wave equation is studied by Lie symmetry group theory. Firstly, the Lie symmetries of this system are calculated. Secondly, one dimensional optimal systems of Lie algebra and all the symmetry reductions are obtained. Finally, based on the power series method and the extended Tanh function method, some new explicit solutions of this system are constructed.展开更多
Two concepts named atom solution and combinatory solution are defined. The classification of all single traveling wave atom solutions to sinh-Gordon equation is obtained, and qualitative properties of solutions are di...Two concepts named atom solution and combinatory solution are defined. The classification of all single traveling wave atom solutions to sinh-Gordon equation is obtained, and qualitative properties of solutions are discussed. In particular, we point out that some qualitative properties derived intuitively from dynamic system method are not true. Finally, we prove that our solutions to sinh-Gordon equation include all solutions obtained in the paper [Z.T. Fu, et al., Commun. Theor. Phys. (Beijing, China) 45 (2006) 55]. Through an example, we show how to give some new identities on Jacobian elliptic functions.展开更多
New exact solutions expressed by the Jacobi elliptic functions are obtained to the long-short wave interaction equations by using the modified F-expansion method. In the limit case, solitary wave solutions and triangu...New exact solutions expressed by the Jacobi elliptic functions are obtained to the long-short wave interaction equations by using the modified F-expansion method. In the limit case, solitary wave solutions and triangular periodic wave solutions are obtained as well.展开更多
Based on the homogenous balance method and the trial function method, several trial function methods composed of exponential functions are proposed and applied to nonlinear discrete systems. With the.help of symbolic ...Based on the homogenous balance method and the trial function method, several trial function methods composed of exponential functions are proposed and applied to nonlinear discrete systems. With the.help of symbolic computation system, the new exact solitary wave solutions to discrete nonlinear mKdV lattice equation, discrete nonlinear (2 + 1) dimensional Toda lattice equation, Ablowitz-Ladik-lattice system are constructed.The method is of significance to seek exact solitary wave solutions to other nonlinear discrete systems.展开更多
A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120<SUP></SUP> do...A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120<SUP></SUP> down to very low ones of diminishing height. Solutions are sought for the Euler model by employing a unified expansion of the logarithmic hodograph in terms of a set of intrinsic component functions analytically determined to represent all the intrinsic properties of the wave entity from the wave crest to its outskirts. The unknown coefficients in the expansion are determined by minimization of the mean-square error of the solution, with the minimization optimized so as to take as few terms as needed to attain results as high in accuracy as attainable. In this regard, Stokess formula, F<SUP>2</SUP>= tan , relating the wave speed (the Froude number F) and the logarithmic decrement of its wave field in the outskirt, is generalized to establish a new criterion requiring (for minimizing solution error) the functional expansion to contain a finite power series in M terms of Stokess basic term (singular in ), such that 2M is just somewhat beyond unity, i.e. 2M1. This fundamental criterion is fully validated by solutions for waves of various amplitude-to-water depth ratio =a/h, especially about 0.01, at which M=10 by the criterion. In this pursuit, the class of dwarf solitary waves, defined for waves with 0.01, is discovered as a group of problems more challenging than even the highest wave. For the highest wave, a new solution is determined here to give the maximum height <SUB>hst</SUB>=0.8331990, and speed F<SUB>hst</SUB>=1.290890, accurate to the last significant figure, which seems to be a new record.展开更多
The prime objective of this paper is to explore the new exact soliton solutions to the higher-dimensional nonlinear Fokas equation and(2+1)-dimensional breaking soliton equations via a generalized exponential rational...The prime objective of this paper is to explore the new exact soliton solutions to the higher-dimensional nonlinear Fokas equation and(2+1)-dimensional breaking soliton equations via a generalized exponential rational function(GERF) method. Many different kinds of exact soliton solution are obtained, all of which are completely novel and have never been reported in the literature before. The dynamical behaviors of some obtained exact soliton solutions are also demonstrated by a choice of appropriate values of the free constants that aid in understanding the nonlinear complex phenomena of such equations. These exact soliton solutions are observed in the shapes of different dynamical structures of localized solitary wave solutions, singular-form solitons, single solitons,double solitons, triple solitons, bell-shaped solitons, combo singular solitons, breather-type solitons,elastic interactions between triple solitons and kink waves, and elastic interactions between diverse solitons and kink waves. Because of the reduction in symbolic computation work and the additional constructed closed-form solutions, it is observed that the suggested technique is effective, robust, and straightforward. Moreover, several other types of higher-dimensional nonlinear evolution equation can be solved using the powerful GERF technique.展开更多
This paper investigates the solitary wave solutions of the (2+1)-dimensional regularized long-wave (2DRLG) equation which is arising in the investigation of the Rossby waves in rotating flows and the drift waves in pl...This paper investigates the solitary wave solutions of the (2+1)-dimensional regularized long-wave (2DRLG) equation which is arising in the investigation of the Rossby waves in rotating flows and the drift waves in plasmas and (2+1) dimensional Davey-Stewartson (DS) equation which is governing the dynamics of weakly nonlinear modulation of a lattice wave packet in a multidimensional lattice. By using extended mapping method technique, we have shown that the 2DRLG-2DDS equations can be reduced to the elliptic-like equation. Then, the extended mapping method is used to obtain a series of solutions including the single and the combined non degenerative Jacobi elliptic function solutions and their degenerative solutions to the above mentioned class of nonlinear partial differential equations (NLPDEs).展开更多
The key purpose of the present research is to derive the exact solutions of nonlinear water wave equations(NLWWEs)in oceans through the invariant subspace scheme(ISS).In this respect,the NLWWEs which describe specific...The key purpose of the present research is to derive the exact solutions of nonlinear water wave equations(NLWWEs)in oceans through the invariant subspace scheme(ISS).In this respect,the NLWWEs which describe specific nonlinear waves are converted to a number of systems of ordinary differential equations(ODEs)such that the resulting systems can be efficiently handled by computer algebra systems.As an accomplishment,the performance of the well-designed ISS in extracting a group of exact solutions is formally confirmed.In the end,the stability analysis for the NLWWE is investigated through the linear stability scheme.展开更多
The hyperbolic function method for nonlinear wave equations ispresented. In support of a computer algebra system, many exact solitary wave solutions of a class of nonlinear wave equations are obtained via the method. ...The hyperbolic function method for nonlinear wave equations ispresented. In support of a computer algebra system, many exact solitary wave solutions of a class of nonlinear wave equations are obtained via the method. The method is based on the fact that the solitary wave solutions are essentially of a localized nature. Writing the solitary wave solutions of a nonlinear wave equation as the polynomials of hyperbolic functions, the nonlinear wave equation can be changed into a nonlinear system of algebraic equations. The system can be solved via Wu Elimination or Grbner base method. The exact solitary wave solutions of the nonlinear wave equation are obtained including many new exact solitary wave solutions.展开更多
An extended hyperbola function method is proposed to construct exact solitary wave solutions to nonlinear wave equation based upon a coupled Riccati equation. It is shown that more new solitary wave solutions can be f...An extended hyperbola function method is proposed to construct exact solitary wave solutions to nonlinear wave equation based upon a coupled Riccati equation. It is shown that more new solitary wave solutions can be found by this new method, which include kink-shaped soliton solutions, bell-shaped soliton solutions and new solitary wave.The new method can be applied to other nonlinear equations in mathematical physics.展开更多
Based on the Lagrangian action density under Born-Infeld type dynamics and motivated by the one-dimensional prescribed mean curvature equation,we investigate the polynomial function model in Born-Infeld theory in this...Based on the Lagrangian action density under Born-Infeld type dynamics and motivated by the one-dimensional prescribed mean curvature equation,we investigate the polynomial function model in Born-Infeld theory in this paper with the form of-([10α(φ′)^(2)]φ′)′=λf(φ(x)),whereλ>0 is a real parameter,f∈C 2(0,+∞)is a nonlinear function.We are interested in the exact number of positive solutions of the above nonlinear equation.We specifically develop for the problem combined with a careful analysis of a time-map method.展开更多
By introducing a transformation and applying the trial function approach,many exact solutions to a class of nonlinear wave equations are presented. Among them,some are given for the first time.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the Natural Science Foundation (Grant No 200408020103), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia, China and the Youth Foundation (Grant No QN004024) of Inner Mongolia Normal University, China.
文摘Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.
基金Supported by the National Natural Science Foundation of China (10871075)Natural Science Foundation of Guangdong Province,China (9151064201000040)
文摘In this article, the authors study the exact traveling wave solutions of modified Zakharov equations for plasmas with a quantum correction by hyperbolic tangent function expansion method, hyperbolic secant expansion method, and Jacobi elliptic function ex- pansion method. They obtain more exact traveling wave solutions including trigonometric function solutions, rational function solutions, and more generally solitary waves, which are called classical bright soliton, W-shaped soliton, and M-shaped soliton.
文摘Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and even in quantum mechanics. But all these equations are most often studied without worrying about what would happen if this equation were maintained, that is to say, had a second member synonymous with an external force. It is true that on a physical level, such equations can be considered as describing the generation of waves on a waveguide using an external force. However, the in-depth analysis of this aspect is not at the center of our reflection in this article, but for us, it is a question of proposing exact solutions to this type of equation and above all proposing the general form of the external force so that the obtaining exact solutions is possible.
文摘In this paper, the dispersive long wave equation is studied by Lie symmetry group theory. Firstly, the Lie symmetries of this system are calculated. Secondly, one dimensional optimal systems of Lie algebra and all the symmetry reductions are obtained. Finally, based on the power series method and the extended Tanh function method, some new explicit solutions of this system are constructed.
基金The project supported by Scientific Research Fund of Education Department of Heilongjiang Province of China under Grant No.11511008
文摘Two concepts named atom solution and combinatory solution are defined. The classification of all single traveling wave atom solutions to sinh-Gordon equation is obtained, and qualitative properties of solutions are discussed. In particular, we point out that some qualitative properties derived intuitively from dynamic system method are not true. Finally, we prove that our solutions to sinh-Gordon equation include all solutions obtained in the paper [Z.T. Fu, et al., Commun. Theor. Phys. (Beijing, China) 45 (2006) 55]. Through an example, we show how to give some new identities on Jacobian elliptic functions.
文摘New exact solutions expressed by the Jacobi elliptic functions are obtained to the long-short wave interaction equations by using the modified F-expansion method. In the limit case, solitary wave solutions and triangular periodic wave solutions are obtained as well.
基金the National Natural Science Foundation of China (10461006)the Science Research Foundation of Institution of Higher Education of Inner Mongolia Autonomous Region (NJZZ07031)+1 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region (200408020103)the Natural Science Research Program of Inner Mongolia Normal University (QN005023)
文摘Based on the homogenous balance method and the trial function method, several trial function methods composed of exponential functions are proposed and applied to nonlinear discrete systems. With the.help of symbolic computation system, the new exact solitary wave solutions to discrete nonlinear mKdV lattice equation, discrete nonlinear (2 + 1) dimensional Toda lattice equation, Ablowitz-Ladik-lattice system are constructed.The method is of significance to seek exact solitary wave solutions to other nonlinear discrete systems.
文摘A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120<SUP></SUP> down to very low ones of diminishing height. Solutions are sought for the Euler model by employing a unified expansion of the logarithmic hodograph in terms of a set of intrinsic component functions analytically determined to represent all the intrinsic properties of the wave entity from the wave crest to its outskirts. The unknown coefficients in the expansion are determined by minimization of the mean-square error of the solution, with the minimization optimized so as to take as few terms as needed to attain results as high in accuracy as attainable. In this regard, Stokess formula, F<SUP>2</SUP>= tan , relating the wave speed (the Froude number F) and the logarithmic decrement of its wave field in the outskirt, is generalized to establish a new criterion requiring (for minimizing solution error) the functional expansion to contain a finite power series in M terms of Stokess basic term (singular in ), such that 2M is just somewhat beyond unity, i.e. 2M1. This fundamental criterion is fully validated by solutions for waves of various amplitude-to-water depth ratio =a/h, especially about 0.01, at which M=10 by the criterion. In this pursuit, the class of dwarf solitary waves, defined for waves with 0.01, is discovered as a group of problems more challenging than even the highest wave. For the highest wave, a new solution is determined here to give the maximum height <SUB>hst</SUB>=0.8331990, and speed F<SUB>hst</SUB>=1.290890, accurate to the last significant figure, which seems to be a new record.
基金funded by the Science and Engineering Research Board,SERB-DST,India,under project scheme MATRICS(MTR/2020/000531)。
文摘The prime objective of this paper is to explore the new exact soliton solutions to the higher-dimensional nonlinear Fokas equation and(2+1)-dimensional breaking soliton equations via a generalized exponential rational function(GERF) method. Many different kinds of exact soliton solution are obtained, all of which are completely novel and have never been reported in the literature before. The dynamical behaviors of some obtained exact soliton solutions are also demonstrated by a choice of appropriate values of the free constants that aid in understanding the nonlinear complex phenomena of such equations. These exact soliton solutions are observed in the shapes of different dynamical structures of localized solitary wave solutions, singular-form solitons, single solitons,double solitons, triple solitons, bell-shaped solitons, combo singular solitons, breather-type solitons,elastic interactions between triple solitons and kink waves, and elastic interactions between diverse solitons and kink waves. Because of the reduction in symbolic computation work and the additional constructed closed-form solutions, it is observed that the suggested technique is effective, robust, and straightforward. Moreover, several other types of higher-dimensional nonlinear evolution equation can be solved using the powerful GERF technique.
文摘This paper investigates the solitary wave solutions of the (2+1)-dimensional regularized long-wave (2DRLG) equation which is arising in the investigation of the Rossby waves in rotating flows and the drift waves in plasmas and (2+1) dimensional Davey-Stewartson (DS) equation which is governing the dynamics of weakly nonlinear modulation of a lattice wave packet in a multidimensional lattice. By using extended mapping method technique, we have shown that the 2DRLG-2DDS equations can be reduced to the elliptic-like equation. Then, the extended mapping method is used to obtain a series of solutions including the single and the combined non degenerative Jacobi elliptic function solutions and their degenerative solutions to the above mentioned class of nonlinear partial differential equations (NLPDEs).
文摘The key purpose of the present research is to derive the exact solutions of nonlinear water wave equations(NLWWEs)in oceans through the invariant subspace scheme(ISS).In this respect,the NLWWEs which describe specific nonlinear waves are converted to a number of systems of ordinary differential equations(ODEs)such that the resulting systems can be efficiently handled by computer algebra systems.As an accomplishment,the performance of the well-designed ISS in extracting a group of exact solutions is formally confirmed.In the end,the stability analysis for the NLWWE is investigated through the linear stability scheme.
基金This work was supported by the National 973 Project (Grant No. G1998030600) Post-doctoral Foundation .
文摘The hyperbolic function method for nonlinear wave equations ispresented. In support of a computer algebra system, many exact solitary wave solutions of a class of nonlinear wave equations are obtained via the method. The method is based on the fact that the solitary wave solutions are essentially of a localized nature. Writing the solitary wave solutions of a nonlinear wave equation as the polynomials of hyperbolic functions, the nonlinear wave equation can be changed into a nonlinear system of algebraic equations. The system can be solved via Wu Elimination or Grbner base method. The exact solitary wave solutions of the nonlinear wave equation are obtained including many new exact solitary wave solutions.
文摘An extended hyperbola function method is proposed to construct exact solitary wave solutions to nonlinear wave equation based upon a coupled Riccati equation. It is shown that more new solitary wave solutions can be found by this new method, which include kink-shaped soliton solutions, bell-shaped soliton solutions and new solitary wave.The new method can be applied to other nonlinear equations in mathematical physics.
基金Supported by National Natural Science Foundation of He’nan Province of China(Grant No.222300420416)National Natural Science Foundation of China(Grant Nos.11471099,11971148)Graduate Talents Program of Henan University(Grant No.SYLYC2022078).
文摘Based on the Lagrangian action density under Born-Infeld type dynamics and motivated by the one-dimensional prescribed mean curvature equation,we investigate the polynomial function model in Born-Infeld theory in this paper with the form of-([10α(φ′)^(2)]φ′)′=λf(φ(x)),whereλ>0 is a real parameter,f∈C 2(0,+∞)is a nonlinear function.We are interested in the exact number of positive solutions of the above nonlinear equation.We specifically develop for the problem combined with a careful analysis of a time-map method.
文摘By introducing a transformation and applying the trial function approach,many exact solutions to a class of nonlinear wave equations are presented. Among them,some are given for the first time.