The sharing of geographical analysis models is of crucial importance for simulating geographic processes and phenomena in the current geographical information systems(e.g.Digital Earth),but there remain some issues th...The sharing of geographical analysis models is of crucial importance for simulating geographic processes and phenomena in the current geographical information systems(e.g.Digital Earth),but there remain some issues that have not been completely resolved.The challenges include,eliminating model heterogeneity and searching for suitable infrastructures to support the open sharing and effective execution of models.Taking advantage of cloud computing,this article aims to address the above issues and develop an open environment for geographical analysis model sharing.On the basis of the analysis of the applicability of cloud computing,the architecture of the open environment is proposed.More importantly,key strategies designed for heterogeneous model description,model encapsulating as well as model deploying and transparent accessing in the cloud are discussed in detail to establish such an environment.Finally,the prototype environment is implemented,and experiments were conducted to verify the environment’s feasibility to support the sharing of geographical analysis models.展开更多
Objectives" To deepen our understanding of the status quo and to identify the hot topics and develop- mental trends of research on nursing models in countries other than China in the most recent decade. Methods: The...Objectives" To deepen our understanding of the status quo and to identify the hot topics and develop- mental trends of research on nursing models in countries other than China in the most recent decade. Methods: The study subjects were the publications retrieved from the PubMed database using the MeSH terms of "Models, Nursing". Bibliographic item co-occurrence mining system (BICOMS) software was used for conventional bibliometric analysis of publications during two time periods, 2005-2009 and 2010-2014. The number of published journal articles, journal distribution, authors of publications, country of origin of journals, and language of publications were analyzed to establish a high-frequency keyword profile and co-occurrence matrix. Graphical clustering toolkit (gCLUTO) software was applied for two-way clustering analysis and visualized analysis. Results: A total of 1472 journal articles with a key theme of nursing models were retrieved for final analysis, including 771 published during 2005-2009 and 701 during 2010-2014. The bibliometric analysis revealed that publications other than China concerning nursing models were mostly concentrated in the United States and the United Kingdom and that the number of relevant publications has been continuously decreasing. The two-way clustering analysis showed that there were mainly four types of research themes in the relevant publications in countries other than China during 2005-2009, i.e., nursing education and theoretical research, clinical nursing and psychological care, nursing administration, and models of nursing education, whereas there were five types during 2010-2014, i.e., nursing theories and clinical nursing practice, nursing administration models and assessments of nurses' knowledge and skills, community nursing administration models, nursing human resource management, and nursing education models and approaches. Conclusions: Research on nursing models in countries other than China is relatively mature and stable with a broader view, but it has shown a declining trend in recent years. It emphasizes both theory and practice, with research content tending to be structured into four modules, i.e., nursing education, administration, clinical practice, and theoretical research. Community nursing models may become a key research direction in the international research on nursing models in the future.展开更多
We analyzed accident factors in a 2020 ship collision case that occurred off Kii Oshima Island using the SHELL model analysis and examined corresponding collision prevention measures.The SHELL model analysis is a fram...We analyzed accident factors in a 2020 ship collision case that occurred off Kii Oshima Island using the SHELL model analysis and examined corresponding collision prevention measures.The SHELL model analysis is a framework for identifying accident factors related to human abilities and characteristics,hardware,software,and the environment.Beyond assessing the accident factors in each element,we also examined the interrelationship between humans and each element.This study highlights the importance of(1)training to enhance situational awareness,(2)improving decision-making skills,and(3)establishing structured decision-making procedures to prevent maritime collision accidents.Additionally,we considered safety measures through(4)hardware enhancements and(5)environmental measures.Furthermore,to prevent accidents,implementing measures grounded in(6)predictions is deemed effective.This study identified accident factors through prediction alongside the SHELL model analysis and proposed countermeasures based on the findings.By applying these predictions,more countermeasures can be derived,which,when combined strategically,can significantly aid in preventing maritime collision accidents.展开更多
The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed ...The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.展开更多
CATIA V5R20 software was utilized to build up a three-dimensional solid model of inline four-cylinder gasoline engine crankshaft.The free modal analysis of the first six orders from the whole crankshaft model was carr...CATIA V5R20 software was utilized to build up a three-dimensional solid model of inline four-cylinder gasoline engine crankshaft.The free modal analysis of the first six orders from the whole crankshaft model was carried out based on TGrid algorithm by using ANSYS Workbench14.0software and the natural frequency and vibration modes were obtained.The reliability of the finite element model was verified by comparing with modal test result.This provides a reference for further design and optimization of the crankshaft.展开更多
This paper presents a detailed investigation, via field experiment, into the mechanism of high-order polygonal wear of wheels of a new type of high-speed train. The investigation was carried out during the performance...This paper presents a detailed investigation, via field experiment, into the mechanism of high-order polygonal wear of wheels of a new type of high-speed train. The investigation was carried out during the performance acceptance test of the train and its initial commercial operation. The investigation covered the performance acceptance test of 150 000 km and the commercial operation of about 150 000 km. In the performance acceptance test of the first stage of about 70 000 km, at 200-250 km/h with full loading and sometimes overloading by 30%, the serious polygonal wear of 23-order took place on all the wheels of the train, and was measured and analyzed in detail. All the potygonized wheels were re-profiled because the polygonal wear had caused strong vibration and damage to the train parts. After re-profiling, the vibration of the train and track and the wear status of the wheels were measured and analyzed at different test mileages according to the polygonal wear situation of the wheels. The measured vibration of the train includes the accelerations at different positions of a motor car and a trail car. The vibration modes of the key parts of the bogies of the two cars were calculated. Meanwhile, the track resonant frequencies were investigated at the site. The purpose of the above tests and analysis is try to find the frequency of work mode matching the passing frequency of the high-order wheel polygon. The present investigation shows that one of the working models causes the formation and development of the high-order wheel polygonal wear. The growth of this wear was effectively reduced through the frequent changing of the running speed of the train operating on the way back and forth every day.展开更多
Shift-share analysis has been confirmed a useful approach in the study of regional economics and many kinds of extended shift-share models have been advanced and put into practice in economic studies, but few have hit...Shift-share analysis has been confirmed a useful approach in the study of regional economics and many kinds of extended shift-share models have been advanced and put into practice in economic studies, but few have hitherto been introduced and applied to the tourism research in China. Moreover understanding the spatially competitive relationship is of paramount importance for marketers, developers, and planners involved in tourism strategy development. Based on international tourism receipts from 1995 to 2004, this study aims at probing into the spatial competitiveness of interna- tional tourism in Jiangsu Province in comparison with its neighbors by applying a spatially extended shift-share model and a modified dynamic shift-share model. The empirical results illustrate that exceptional years may exist in the ap- plication of dynamic shift-share models. To solve this issue, modifications to dynamic shift-share model are put forward. The analytical results are not only presented but also explained by the comparison of background conditions of tourism development between Jiangsu and its key competitors. The conclusions can be drawn that the growth of international tourism receipts in Jiangsu mainly attributes to the national component and the competitive component and Zhejiang is the most important rival to Jiangsu during the period of 1995-2004. In order to upgrade the tourism competitiveness, it is indispensable for Jiangsu to take proper positioning, promoting and marketing strategies and to cooperate and integrate with its main rivals.展开更多
Ionic Polymer-Metal Composite (IPMC) is a new electro-active polymer, which has the advantages of light weight, flexibility, and large stroke with low driving voltage. Because of these features, IPMC can be applied ...Ionic Polymer-Metal Composite (IPMC) is a new electro-active polymer, which has the advantages of light weight, flexibility, and large stroke with low driving voltage. Because of these features, IPMC can be applied to bionic robotic actuators, artificial muscles, as well as dynamic sensors. However, IPMC has the major drawback of low generative blocking force. In this paper, in order to enhance the blocking force, the Nation membranes with thickness of 0.22 mm, 0.32 mm, 0.42 mm, 0.64 mm and 0.8 mm were prepared by casting from liquid solution. By employing these Nation membranes, IPMCs with varying thickness were fabricated by electroless plating. The elastic modulus of the casted Nation membranes were obtained by a nano-indenter, and the current, the displacement and the blocking force were respectively measured by the apparatus for actuation test. Finally, the effects of the thickness on the performance of IPMC were analyzed with an electromechanical model. Experimental study and theory analysis indicate that as the thickness increases, the elastic modulus of Nation membrane and the blocking force of IPMC increase, however, the current and the displacement decrease.展开更多
Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when ...Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data.展开更多
A Fisher discriminant analysis (FDA) model for the prediction of classification of rockburst in deep-buried long tunnel was established based on the Fisher discriminant theory and the actual characteristics of the p...A Fisher discriminant analysis (FDA) model for the prediction of classification of rockburst in deep-buried long tunnel was established based on the Fisher discriminant theory and the actual characteristics of the project. First, the major factors of rockburst, such as the maximum tangential stress of the cavern wall σθ, uniaxial compressive strength σc, uniaxial tensile strength or, and the elastic energy index of rock Wet, were taken into account in the analysis. Three factors, Stress coefficient σθ/σc, rock brittleness coefficient σc/σt, and elastic energy index Wet, were defined as the criterion indices for rockburst prediction in the proposed model. After training and testing of 12 sets of measured data, the discriminant functions of FDA were solved, and the ratio of misdiscrimina- tion is zero. Moreover, the proposed model was used to predict rockbursts of Qinling tunnel along Xi'an-Ankang railway. The results show that three forecast results are identical with the actual situation. Therefore, the prediction accuracy of the FDA model is acceptable.展开更多
The spatial calculating analysis model is based on GIS overlay. It will compartmentalize the land in research district into three spatial types: unchanged parts, converted parts and increased parts. By this method we ...The spatial calculating analysis model is based on GIS overlay. It will compartmentalize the land in research district into three spatial types: unchanged parts, converted parts and increased parts. By this method we can evaluate the numerical model and dynamic degree model for calculating land-use change rates. Furthermore, the paper raises the possibility of revising the calculating analysis model of spatial information in order to predicate more precisely the dynamic changing level of all types of land uses. In the most concrete terms, the model is used mainly to understand changed area and changed rates (increasing or decreasing) of different land types from microcosmic angle and establish spatial distribution and spatio-temporal principles of the changing urban lands. And we will try to find out why the situation can take place by combining social and economic situations. The result indicates the calculating analysis model of spatial information can derive more accurate procedure of spatial transference and increase of all kinds of land from microcosmic angle. By this model and technology we can conduct the research of land-use spatio-temporal structure evolution more systematically and more deeply, and can obtain a satisfactory result. The result will benefit the rational planning and management of urban land use of developed coastal areas in China in the future.展开更多
Prognostics and health management (PHM) significantly improves system availability and reliability, and reduces the cost of system operations. Design for testability (DFT) developed concurrently with system design...Prognostics and health management (PHM) significantly improves system availability and reliability, and reduces the cost of system operations. Design for testability (DFT) developed concurrently with system design is an important way to improve PHM capability. Testability modeling and analysis are the foundation of DFT. This paper proposes a novel approach of testability modeling and analysis based on failure evolution mechanisms. At the component level, the fault progression-related information of each unit under test (UUT) in a system is obtained by means of failure modes, evolution mechanisms, effects and criticality analysis (FMEMECA), and then the failure-symptom dependency can be generated. At the system level, the dynamic attributes of UUTs are assigned by using the bond graph methodology, and then the symptom-test dependency can be obtained by means of the functional flow method. Based on the failure-symptom and symptom-test dependencies, testability analysis for PHM systems can be realized. A shunt motor is used to verify the application of the approach proposed in this paper. Experimental results show that this approach is able to be applied to testability modeling and analysis for PHM systems very well, and the analysis results can provide a guide for engineers to design for testability in order to improve PHM performance.展开更多
Magnesium alloys have been investigated as biodegradable implant materials since the last century. Non-uniform degradation caused by local corrosion limits their application, and no appropriate technology has been use...Magnesium alloys have been investigated as biodegradable implant materials since the last century. Non-uniform degradation caused by local corrosion limits their application, and no appropriate technology has been used in the research. In this study, electrochemical noise has been used to study the pit corrosion on magnesium alloy AZ31 in four types of simulated body solutions, and the data have been analyzed using wavelet analysis and stochastic theory. Combining these with the conventional polarization curves, mass loss tests and scanning electron microscopy, the electrochemical noise results implied that AZ31 alloy in normal saline has the fastest corrosion rate, a high pit initiation rate, and maximum pit growth probability. In Hanks' balanced salt solution and phosphate-buffered saline, AZ31 alloy has a high pit initiation rate and larger pit growth probability, while in simulated body fluid, AZ31 alloy has the slowest corrosion rate, lowest pit initiation rate and smallest pit growth probability.展开更多
A nonlinear dynamic analysis model is estabilished on the basis of 'lumped mass' approach, which takes the influence of the fluid flow within the pipe into consideration. Numerical results are compared with th...A nonlinear dynamic analysis model is estabilished on the basis of 'lumped mass' approach, which takes the influence of the fluid flow within the pipe into consideration. Numerical results are compared with the published works, and the effects of internal fluid flow, internal pressure, dyanmics as well as the nonlinear characteristics on the behavior of flexible risers are discussed. From this work, some useful conclusions are drawn.展开更多
In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign met...In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.展开更多
In this paper, first a circular diaphragm is modeled using the classical plate theory. An analytical solution based on differential transformation method (DTM) and Runge-Kutta method is employed for solving the gove...In this paper, first a circular diaphragm is modeled using the classical plate theory. An analytical solution based on differential transformation method (DTM) and Runge-Kutta method is employed for solving the governing differential equation for the first time. Then the influences of various parameters on central deflection of the diaphragm, stress distribution and capacitance of pressure sensor with a time-dependent pressure are examined. Several case studies are compared with simulations to confirm the proposed method. The analytical results compared with ABAQUS simulation show excellent agreement with the simulation results. This method is very promising for time saving in calculating micro-device characteristics.展开更多
As an interdisciplinary comprehensive subject involving multidisciplinary knowledge,emotional analysis has become a hot topic in psychology,health medicine and computer science.It has a high comprehensive and practica...As an interdisciplinary comprehensive subject involving multidisciplinary knowledge,emotional analysis has become a hot topic in psychology,health medicine and computer science.It has a high comprehensive and practical application value.Emotion research based on the social network is a relatively new topic in the field of psychology and medical health research.The text emotion analysis of college students also has an important research significance for the emotional state of students at a certain time or a certain period,so as to understand their normal state,abnormal state and the reason of state change from the information they wrote.In view of the fact that convolutional neural network cannot make full use of the unique emotional information in sentences,and the need to label a large number of highquality training sets for emotional analysis to improve the accuracy of the model,an emotional analysismodel using the emotional dictionary andmultichannel convolutional neural network is proposed in this paper.Firstly,the input matrix of emotion dictionary is constructed according to the emotion information,and the different feature information of sentences is combined to form different network input channels,so that the model can learn the emotion information of input sentences from various feature representations in the training process.Then,the loss function is reconstructed to realize the semi supervised learning of the network.Finally,experiments are carried on COAE 2014 and self-built data sets.The proposed model can not only extract more semantic information in emotional text,but also learn the hidden emotional information in emotional text.The experimental results show that the proposed emotion analysis model can achieve a better classification performance.Compared with the best benchmark model gram-CNN,the F1 value can be increased by 0.026 in the self-built data set,and it can be increased by 0.032 in the COAE 2014 data set.展开更多
Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed t...Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.展开更多
Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity ana...Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.展开更多
This manuscript presents a stochastic model updating method, taking both uncertainties in models and variability in testing into account. The updated finite element(FE) models obtained through the proposed technique...This manuscript presents a stochastic model updating method, taking both uncertainties in models and variability in testing into account. The updated finite element(FE) models obtained through the proposed technique can aid in the analysis and design of structural systems. The authors developed a stochastic model updating method integrating distance discrimination analysis(DDA) and advanced Monte Carlo(MC) technique to(1) enable more efficient MC by using a response surface model,(2) calibrate parameters with an iterative test-analysis correlation based upon DDA, and(3) utilize and compare different distance functions as correlation metrics. Using DDA, the influence of distance functions on model updating results is analyzed. The proposed stochastic method makes it possible to obtain a precise model updating outcome with acceptable calculation cost. The stochastic method is demonstrated on a helicopter case study updated using both Euclidian and Mahalanobis distance metrics. It is observed that the selected distance function influences the iterative calibration process and thus, the calibration outcome, indicating that an integration of different metrics might yield improved results.展开更多
基金The work described in this article was supported by the Key Program of National Natural Science Foundation of China(Grant No.40730527)the National Natural Science Foundation of China(Grant No.41001223,Grant No.41101439)the open fund from the Guangdong Key Laboratory for Urbanization and Geo-simulation in Sun Yat-sen University.
文摘The sharing of geographical analysis models is of crucial importance for simulating geographic processes and phenomena in the current geographical information systems(e.g.Digital Earth),but there remain some issues that have not been completely resolved.The challenges include,eliminating model heterogeneity and searching for suitable infrastructures to support the open sharing and effective execution of models.Taking advantage of cloud computing,this article aims to address the above issues and develop an open environment for geographical analysis model sharing.On the basis of the analysis of the applicability of cloud computing,the architecture of the open environment is proposed.More importantly,key strategies designed for heterogeneous model description,model encapsulating as well as model deploying and transparent accessing in the cloud are discussed in detail to establish such an environment.Finally,the prototype environment is implemented,and experiments were conducted to verify the environment’s feasibility to support the sharing of geographical analysis models.
基金supported by Shanxi Provincial Health Department(No.201201031)
文摘Objectives" To deepen our understanding of the status quo and to identify the hot topics and develop- mental trends of research on nursing models in countries other than China in the most recent decade. Methods: The study subjects were the publications retrieved from the PubMed database using the MeSH terms of "Models, Nursing". Bibliographic item co-occurrence mining system (BICOMS) software was used for conventional bibliometric analysis of publications during two time periods, 2005-2009 and 2010-2014. The number of published journal articles, journal distribution, authors of publications, country of origin of journals, and language of publications were analyzed to establish a high-frequency keyword profile and co-occurrence matrix. Graphical clustering toolkit (gCLUTO) software was applied for two-way clustering analysis and visualized analysis. Results: A total of 1472 journal articles with a key theme of nursing models were retrieved for final analysis, including 771 published during 2005-2009 and 701 during 2010-2014. The bibliometric analysis revealed that publications other than China concerning nursing models were mostly concentrated in the United States and the United Kingdom and that the number of relevant publications has been continuously decreasing. The two-way clustering analysis showed that there were mainly four types of research themes in the relevant publications in countries other than China during 2005-2009, i.e., nursing education and theoretical research, clinical nursing and psychological care, nursing administration, and models of nursing education, whereas there were five types during 2010-2014, i.e., nursing theories and clinical nursing practice, nursing administration models and assessments of nurses' knowledge and skills, community nursing administration models, nursing human resource management, and nursing education models and approaches. Conclusions: Research on nursing models in countries other than China is relatively mature and stable with a broader view, but it has shown a declining trend in recent years. It emphasizes both theory and practice, with research content tending to be structured into four modules, i.e., nursing education, administration, clinical practice, and theoretical research. Community nursing models may become a key research direction in the international research on nursing models in the future.
文摘We analyzed accident factors in a 2020 ship collision case that occurred off Kii Oshima Island using the SHELL model analysis and examined corresponding collision prevention measures.The SHELL model analysis is a framework for identifying accident factors related to human abilities and characteristics,hardware,software,and the environment.Beyond assessing the accident factors in each element,we also examined the interrelationship between humans and each element.This study highlights the importance of(1)training to enhance situational awareness,(2)improving decision-making skills,and(3)establishing structured decision-making procedures to prevent maritime collision accidents.Additionally,we considered safety measures through(4)hardware enhancements and(5)environmental measures.Furthermore,to prevent accidents,implementing measures grounded in(6)predictions is deemed effective.This study identified accident factors through prediction alongside the SHELL model analysis and proposed countermeasures based on the findings.By applying these predictions,more countermeasures can be derived,which,when combined strategically,can significantly aid in preventing maritime collision accidents.
文摘The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.
文摘CATIA V5R20 software was utilized to build up a three-dimensional solid model of inline four-cylinder gasoline engine crankshaft.The free modal analysis of the first six orders from the whole crankshaft model was carried out based on TGrid algorithm by using ANSYS Workbench14.0software and the natural frequency and vibration modes were obtained.The reliability of the finite element model was verified by comparing with modal test result.This provides a reference for further design and optimization of the crankshaft.
基金Project supported by the National Natural Science Foundation of China (No. U 1134202)
文摘This paper presents a detailed investigation, via field experiment, into the mechanism of high-order polygonal wear of wheels of a new type of high-speed train. The investigation was carried out during the performance acceptance test of the train and its initial commercial operation. The investigation covered the performance acceptance test of 150 000 km and the commercial operation of about 150 000 km. In the performance acceptance test of the first stage of about 70 000 km, at 200-250 km/h with full loading and sometimes overloading by 30%, the serious polygonal wear of 23-order took place on all the wheels of the train, and was measured and analyzed in detail. All the potygonized wheels were re-profiled because the polygonal wear had caused strong vibration and damage to the train parts. After re-profiling, the vibration of the train and track and the wear status of the wheels were measured and analyzed at different test mileages according to the polygonal wear situation of the wheels. The measured vibration of the train includes the accelerations at different positions of a motor car and a trail car. The vibration modes of the key parts of the bogies of the two cars were calculated. Meanwhile, the track resonant frequencies were investigated at the site. The purpose of the above tests and analysis is try to find the frequency of work mode matching the passing frequency of the high-order wheel polygon. The present investigation shows that one of the working models causes the formation and development of the high-order wheel polygonal wear. The growth of this wear was effectively reduced through the frequent changing of the running speed of the train operating on the way back and forth every day.
基金Under the auspices of the National Natural Science Foundation of China (No. 40371030)
文摘Shift-share analysis has been confirmed a useful approach in the study of regional economics and many kinds of extended shift-share models have been advanced and put into practice in economic studies, but few have hitherto been introduced and applied to the tourism research in China. Moreover understanding the spatially competitive relationship is of paramount importance for marketers, developers, and planners involved in tourism strategy development. Based on international tourism receipts from 1995 to 2004, this study aims at probing into the spatial competitiveness of interna- tional tourism in Jiangsu Province in comparison with its neighbors by applying a spatially extended shift-share model and a modified dynamic shift-share model. The empirical results illustrate that exceptional years may exist in the ap- plication of dynamic shift-share models. To solve this issue, modifications to dynamic shift-share model are put forward. The analytical results are not only presented but also explained by the comparison of background conditions of tourism development between Jiangsu and its key competitors. The conclusions can be drawn that the growth of international tourism receipts in Jiangsu mainly attributes to the national component and the competitive component and Zhejiang is the most important rival to Jiangsu during the period of 1995-2004. In order to upgrade the tourism competitiveness, it is indispensable for Jiangsu to take proper positioning, promoting and marketing strategies and to cooperate and integrate with its main rivals.
基金Acknowledgement The authors thank the financial support from the National Natural Science Foundation of China (Grant No. 50705043, 60535020 and 60910007).
文摘Ionic Polymer-Metal Composite (IPMC) is a new electro-active polymer, which has the advantages of light weight, flexibility, and large stroke with low driving voltage. Because of these features, IPMC can be applied to bionic robotic actuators, artificial muscles, as well as dynamic sensors. However, IPMC has the major drawback of low generative blocking force. In this paper, in order to enhance the blocking force, the Nation membranes with thickness of 0.22 mm, 0.32 mm, 0.42 mm, 0.64 mm and 0.8 mm were prepared by casting from liquid solution. By employing these Nation membranes, IPMCs with varying thickness were fabricated by electroless plating. The elastic modulus of the casted Nation membranes were obtained by a nano-indenter, and the current, the displacement and the blocking force were respectively measured by the apparatus for actuation test. Finally, the effects of the thickness on the performance of IPMC were analyzed with an electromechanical model. Experimental study and theory analysis indicate that as the thickness increases, the elastic modulus of Nation membrane and the blocking force of IPMC increase, however, the current and the displacement decrease.
基金supported by the National Nature Science Foundation of China(Grant No.71401052)the National Social Science Foundation of China(Grant No.17BGL156)the Key Project of the National Social Science Foundation of China(Grant No.14AZD024)
文摘Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data.
基金Supported by the National 11th Five-Year Science and Technology Supporting Plan of China(2006BAB02A02)Central South University Innovation funded projects (2009ssxt230, 2009ssxt234)
文摘A Fisher discriminant analysis (FDA) model for the prediction of classification of rockburst in deep-buried long tunnel was established based on the Fisher discriminant theory and the actual characteristics of the project. First, the major factors of rockburst, such as the maximum tangential stress of the cavern wall σθ, uniaxial compressive strength σc, uniaxial tensile strength or, and the elastic energy index of rock Wet, were taken into account in the analysis. Three factors, Stress coefficient σθ/σc, rock brittleness coefficient σc/σt, and elastic energy index Wet, were defined as the criterion indices for rockburst prediction in the proposed model. After training and testing of 12 sets of measured data, the discriminant functions of FDA were solved, and the ratio of misdiscrimina- tion is zero. Moreover, the proposed model was used to predict rockbursts of Qinling tunnel along Xi'an-Ankang railway. The results show that three forecast results are identical with the actual situation. Therefore, the prediction accuracy of the FDA model is acceptable.
基金State Key Laboratory of Information Engineering in Surveying Mapping and Remote SensingNo.WKL((020)0302)
文摘The spatial calculating analysis model is based on GIS overlay. It will compartmentalize the land in research district into three spatial types: unchanged parts, converted parts and increased parts. By this method we can evaluate the numerical model and dynamic degree model for calculating land-use change rates. Furthermore, the paper raises the possibility of revising the calculating analysis model of spatial information in order to predicate more precisely the dynamic changing level of all types of land uses. In the most concrete terms, the model is used mainly to understand changed area and changed rates (increasing or decreasing) of different land types from microcosmic angle and establish spatial distribution and spatio-temporal principles of the changing urban lands. And we will try to find out why the situation can take place by combining social and economic situations. The result indicates the calculating analysis model of spatial information can derive more accurate procedure of spatial transference and increase of all kinds of land from microcosmic angle. By this model and technology we can conduct the research of land-use spatio-temporal structure evolution more systematically and more deeply, and can obtain a satisfactory result. The result will benefit the rational planning and management of urban land use of developed coastal areas in China in the future.
基金the National Natural Science Foundation of China(No.51175502)
文摘Prognostics and health management (PHM) significantly improves system availability and reliability, and reduces the cost of system operations. Design for testability (DFT) developed concurrently with system design is an important way to improve PHM capability. Testability modeling and analysis are the foundation of DFT. This paper proposes a novel approach of testability modeling and analysis based on failure evolution mechanisms. At the component level, the fault progression-related information of each unit under test (UUT) in a system is obtained by means of failure modes, evolution mechanisms, effects and criticality analysis (FMEMECA), and then the failure-symptom dependency can be generated. At the system level, the dynamic attributes of UUTs are assigned by using the bond graph methodology, and then the symptom-test dependency can be obtained by means of the functional flow method. Based on the failure-symptom and symptom-test dependencies, testability analysis for PHM systems can be realized. A shunt motor is used to verify the application of the approach proposed in this paper. Experimental results show that this approach is able to be applied to testability modeling and analysis for PHM systems very well, and the analysis results can provide a guide for engineers to design for testability in order to improve PHM performance.
基金financially supported by the National Natural Science Foundation of China(Nos.51701221 and 51501201)
文摘Magnesium alloys have been investigated as biodegradable implant materials since the last century. Non-uniform degradation caused by local corrosion limits their application, and no appropriate technology has been used in the research. In this study, electrochemical noise has been used to study the pit corrosion on magnesium alloy AZ31 in four types of simulated body solutions, and the data have been analyzed using wavelet analysis and stochastic theory. Combining these with the conventional polarization curves, mass loss tests and scanning electron microscopy, the electrochemical noise results implied that AZ31 alloy in normal saline has the fastest corrosion rate, a high pit initiation rate, and maximum pit growth probability. In Hanks' balanced salt solution and phosphate-buffered saline, AZ31 alloy has a high pit initiation rate and larger pit growth probability, while in simulated body fluid, AZ31 alloy has the slowest corrosion rate, lowest pit initiation rate and smallest pit growth probability.
文摘A nonlinear dynamic analysis model is estabilished on the basis of 'lumped mass' approach, which takes the influence of the fluid flow within the pipe into consideration. Numerical results are compared with the published works, and the effects of internal fluid flow, internal pressure, dyanmics as well as the nonlinear characteristics on the behavior of flexible risers are discussed. From this work, some useful conclusions are drawn.
基金Projects(50875090,50905063) supported by the National Natural Science Foundation of ChinaProject(2009AA04Z111) supported by the National High Technology Research and Development Program of China+2 种基金Project(20090460769) supported by China Postdoctoral Science FoundationProject(2011ZM0070) supported by the Fundamental Research Funds for the Central Universities in ChinaProject(S2011010001155) supported by the Natural Science Foundation of Guangdong Province,China
文摘In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.
文摘In this paper, first a circular diaphragm is modeled using the classical plate theory. An analytical solution based on differential transformation method (DTM) and Runge-Kutta method is employed for solving the governing differential equation for the first time. Then the influences of various parameters on central deflection of the diaphragm, stress distribution and capacitance of pressure sensor with a time-dependent pressure are examined. Several case studies are compared with simulations to confirm the proposed method. The analytical results compared with ABAQUS simulation show excellent agreement with the simulation results. This method is very promising for time saving in calculating micro-device characteristics.
基金This paper was supported by the 2018 Science and Technology Breakthrough Project of Henan Provincial Science and Technology Department(No.182102310694).
文摘As an interdisciplinary comprehensive subject involving multidisciplinary knowledge,emotional analysis has become a hot topic in psychology,health medicine and computer science.It has a high comprehensive and practical application value.Emotion research based on the social network is a relatively new topic in the field of psychology and medical health research.The text emotion analysis of college students also has an important research significance for the emotional state of students at a certain time or a certain period,so as to understand their normal state,abnormal state and the reason of state change from the information they wrote.In view of the fact that convolutional neural network cannot make full use of the unique emotional information in sentences,and the need to label a large number of highquality training sets for emotional analysis to improve the accuracy of the model,an emotional analysismodel using the emotional dictionary andmultichannel convolutional neural network is proposed in this paper.Firstly,the input matrix of emotion dictionary is constructed according to the emotion information,and the different feature information of sentences is combined to form different network input channels,so that the model can learn the emotion information of input sentences from various feature representations in the training process.Then,the loss function is reconstructed to realize the semi supervised learning of the network.Finally,experiments are carried on COAE 2014 and self-built data sets.The proposed model can not only extract more semantic information in emotional text,but also learn the hidden emotional information in emotional text.The experimental results show that the proposed emotion analysis model can achieve a better classification performance.Compared with the best benchmark model gram-CNN,the F1 value can be increased by 0.026 in the self-built data set,and it can be increased by 0.032 in the COAE 2014 data set.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0074936)
文摘Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.
基金supported by the National Natural Science Foundation of China (Grant No. 41271003)the National Basic Research Program of China (Grants No. 2010CB428403 and 2010CB951103)
文摘Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.
基金supported by the National Natural Science Foundation of China (No. 10972019)the Innovation Foundation of BUAA for Ph.D. Graduates of China, and the China Scholarship Council
文摘This manuscript presents a stochastic model updating method, taking both uncertainties in models and variability in testing into account. The updated finite element(FE) models obtained through the proposed technique can aid in the analysis and design of structural systems. The authors developed a stochastic model updating method integrating distance discrimination analysis(DDA) and advanced Monte Carlo(MC) technique to(1) enable more efficient MC by using a response surface model,(2) calibrate parameters with an iterative test-analysis correlation based upon DDA, and(3) utilize and compare different distance functions as correlation metrics. Using DDA, the influence of distance functions on model updating results is analyzed. The proposed stochastic method makes it possible to obtain a precise model updating outcome with acceptable calculation cost. The stochastic method is demonstrated on a helicopter case study updated using both Euclidian and Mahalanobis distance metrics. It is observed that the selected distance function influences the iterative calibration process and thus, the calibration outcome, indicating that an integration of different metrics might yield improved results.