Alternating directions method is one of the approaches for solving linearly constrained separate monotone variational inequalities. Experience on applications has shown that the number of iteration significantly depen...Alternating directions method is one of the approaches for solving linearly constrained separate monotone variational inequalities. Experience on applications has shown that the number of iteration significantly depends on the penalty for the system of linearly constrained equations and therefore the method with variable penalties is advantageous in practice. In this paper, we extend the Kontogiorgis and Meyer method [12] by removing the monotonicity assumption on the variable penalty matrices. Moreover, we introduce a self-adaptive rule that leads the method to be more efficient and insensitive for various initial penalties. Numerical results for a class of Fermat-Weber problems show that the modified method and its self-adaptive technique are proper and necessary in practice.展开更多
A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is refo...A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is reformulated as a linear equality constrained problem where the objective function is separable. Then, by introducing the augmented Lagrangian function, the two variables are alternatively minimized by the Gauss-Seidel idea. Finally, the dual variable is updated. Because the approach makes full use of the special structure of the problem and decomposes the original problem into several low-dimensional sub-problems, the per iteration computational complexity of the approach is dominated by two fast Fourier transforms. Elementary experimental results indicate that the proposed approach is more stable and efficient compared with some state-of-the-art algorithms.展开更多
Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in prac...Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem.展开更多
Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed ...Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.展开更多
In this paper, we consider the convergence of the generalized alternating direction method of multipliers(GADMM) for solving linearly constrained nonconvex minimization model whose objective contains coupled functio...In this paper, we consider the convergence of the generalized alternating direction method of multipliers(GADMM) for solving linearly constrained nonconvex minimization model whose objective contains coupled functions. Under the assumption that the augmented Lagrangian function satisfies the Kurdyka-Lojasiewicz inequality, we prove that the sequence generated by the GADMM converges to a critical point of the augmented Lagrangian function when the penalty parameter in the augmented Lagrangian function is sufficiently large. Moreover, we also present some sufficient conditions guaranteeing the sublinear and linear rate of convergence of the algorithm.展开更多
The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be ...The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive.展开更多
The alternating direction method of multipliers(ADMM)is a widely used method for solving many convex minimization models arising in signal and image processing.In this paper,we propose an inertial ADMM for solving a t...The alternating direction method of multipliers(ADMM)is a widely used method for solving many convex minimization models arising in signal and image processing.In this paper,we propose an inertial ADMM for solving a two-block separable convex minimization problem with linear equality constraints.This algorithm is obtained by making use of the inertial Douglas-Rachford splitting algorithm to the corresponding dual of the primal problem.We study the convergence analysis of the proposed algorithm in infinite-dimensional Hilbert spaces.Furthermore,we apply the proposed algorithm on the robust principal component analysis problem and also compare it with other state-of-the-art algorithms.Numerical results demonstrate the advantage of the proposed algorithm.展开更多
This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite differenc...This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite difference scheme with second-order splitting error, the other two schemes have third-order splitting error, and the last one is an extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained for the first scheme and second one, respectively. Finally, two numerical examples are provided to illustrate the efficiency and accuracy of the methods.展开更多
This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merel...This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merely modifying the couplings between different subsystems.To equip live systems with a quick response ability when modifying network topology,while keeping a satisfactory dynamic performance,a novel reconfiguration control scheme based on the alternating direction method of multipliers(ADMM)is presented.In this scheme,the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control.Meanwhile,by employing the powerful ADMM algorithm,the iterative formulas for solving the reconfigured optimization problem are obtained,which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response.Ultimately,the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics.展开更多
Tensor robust principal component analysis(TRPCA) problem aims to separate a low-rank tensor and a sparse tensor from their sum. This problem has recently attracted considerable research attention due to its wide ra...Tensor robust principal component analysis(TRPCA) problem aims to separate a low-rank tensor and a sparse tensor from their sum. This problem has recently attracted considerable research attention due to its wide range of potential applications in computer vision and pattern recognition. In this paper, we propose a new model to deal with the TRPCA problem by an alternation minimization algorithm along with two adaptive rankadjusting strategies. For the underlying low-rank tensor, we simultaneously perform low-rank matrix factorizations to its all-mode matricizations; while for the underlying sparse tensor,a soft-threshold shrinkage scheme is applied. Our method can be used to deal with the separation between either an exact or an approximate low-rank tensor and a sparse one. We established the subsequence convergence of our algorithm in the sense that any limit point of the iterates satisfies the KKT conditions. When the iteration stops, the output will be modified by applying a high-order SVD approach to achieve an exactly low-rank final result as the accurate rank has been calculated. The numerical experiments demonstrate that our method could achieve better results than the compared methods.展开更多
In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algor...In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algorithm does not need a central node. Therefore, it has the characteristics of low communication burden and high privacy. In addition, numerical experiments are provided to validate the effectiveness of the proposed algorithm.展开更多
In this study, we propose a linearized proximal alternating direction method with variable stepsize for solving total variation image reconstruction problems. Our method uses a linearized technique and the proximal fu...In this study, we propose a linearized proximal alternating direction method with variable stepsize for solving total variation image reconstruction problems. Our method uses a linearized technique and the proximal function such that the closed form solutions of the subproblem can be easily derived.In the subproblem, we apply a variable stepsize, that is like Barzilai-Borwein stepsize, to accelerate the algorithm. Numerical results with parallel magnetic resonance imaging demonstrate the efficiency of the proposed algorithm.展开更多
Computed tomography(CT) blurring caused by point spread function leads to errors in quantification and visualization. In this paper, multichannel blind CT image restoration is proposed to overcome the effect of point ...Computed tomography(CT) blurring caused by point spread function leads to errors in quantification and visualization. In this paper, multichannel blind CT image restoration is proposed to overcome the effect of point spread function. The main advantage from multichannel blind CT image restoration is to exploit the diversity and redundancy of information in different acquisitions. The proposed approach is based on a variable splitting to obtain an equivalent constrained optimization formulation, which is addressed with the alternating direction method of multipliers and simply implemented in the Fourier domain. Numerical experiments illustrate that our method obtains a higher average gain value of at least 1.21 d B in terms of Q metric than the other methods, and it requires only 7 iterations of alternating minimization to obtain a fast convergence.展开更多
In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although ...In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration.展开更多
A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inne...A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
This paper aims to enhance the array Beamforming(BF) robustness by tackling issues related to BF weight state estimation encountered in Constant Modulus Blind Beamforming(CMBB). To achieve this, we introduce a novel a...This paper aims to enhance the array Beamforming(BF) robustness by tackling issues related to BF weight state estimation encountered in Constant Modulus Blind Beamforming(CMBB). To achieve this, we introduce a novel approach that incorporates an L1-regularizer term in BF weight state estimation. We start by explaining the CMBB formation mechanism under conditions where there is a mismatch in the far-field signal model. Subsequently, we reformulate the BF weight state estimation challenge using a method known as variable-splitting, turning it into a noise minimization problem. This problem combines both linear and nonlinear quadratic terms with an L1-regularizer that promotes the sparsity. The optimization strategy is based on a variable-splitting method, implemented using the Alternating Direction Method of Multipliers(ADMM). Furthermore, a variable-splitting framework is developed to enhance BF weight state estimation, employing a Kalman Smoother(KS) optimization algorithm. The approach integrates the Rauch-TungStriebel smoother to perform posterior-smoothing state estimation by leveraging prior data. We provide proof of convergence for both linear and nonlinear CMBB state estimation technology using the variable-splitting KS and the iterated extended Kalman smoother. Simulations corroborate our theoretical analysis, showing that the proposed method achieves robust stability and effective convergence, even when faced with signal model mismatches.展开更多
The structured low-rank model for parallel magnetic resonance(MR)imaging can efficiently reconstruct MR images with limited auto-calibration signals.To improve the reconstruction quality of MR images,we integrate the ...The structured low-rank model for parallel magnetic resonance(MR)imaging can efficiently reconstruct MR images with limited auto-calibration signals.To improve the reconstruction quality of MR images,we integrate the joint sparsity and sparsifying transform learning(JTL)into the simultaneous auto-calibrating and k-space estimation(SAKE)structured low-rank model,named JTLSAKE.The alternate direction method of multipliers is exploited to solve the resulting optimization problem,and the optimized gradient method is used to improve the convergence speed.In addition,a graphics processing unit is used to accelerate the proposed algorithm.The experimental results on four in vivo human datasets demonstrate that the reconstruction quality of the proposed algorithm is comparable to that of JTL-based low-rank modeling of local k-space neighborhoods with parallel imaging(JTL-PLORAKS),and the proposed algorithm is 46 times faster than the JTL-PLORAKS,requiring only 4 s to reconstruct a 200×200 pixels MR image with 8 channels.展开更多
In this paper,we investigate the convergence of the generalized Bregman alternating direction method of multipliers(ADMM)for solving nonconvex separable problems with linear constraints.This algorithm relaxes the requ...In this paper,we investigate the convergence of the generalized Bregman alternating direction method of multipliers(ADMM)for solving nonconvex separable problems with linear constraints.This algorithm relaxes the requirement of global Lipschitz continuity of differentiable functions that is often seen in many researches,and it incorporates the acceleration technique of the proximal point algorithm(PPA).As a result,the scope of application of the algorithm is broadened and its performance is enhanced.Under the assumption that the augmented Lagrangian function satisfies the Kurdyka-Lojasiewicz inequality,we demonstrate that the iterative sequence generated by the algorithm converges to a critical point of its augmented Lagrangian function when the penalty parameter in the augmented Lagrangian function is sufficiently large.Finally,we analyze the convergence rate of the algorithm.展开更多
Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstr...Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstruction algorithms usually used nonadaptive sparsifying transforms,resulting in a limited reconstruction accuracy.Therefore,we proposed a new model for accurate parallel MRI reconstruction by combining the L0 norm regularization term based on the efficient sum of outer products dictionary learning(SOUPDIL)with the SENSE model,called SOUPDIL-SENSE.The SOUPDIL-SENSE model is mainly solved by utilizing the variable splitting and alternating direction method of multipliers techniques.The experimental results on four human datasets show that the proposed algorithm effectively promotes the image sparsity,eliminates the noise and artifacts of the reconstructed images,and improves the reconstruction accuracy.展开更多
Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption o...Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.展开更多
基金The first author was supported the NSFC grant 10271054,the third author was supported in part by the Hong Kong Research Grants Council through a RGC-CERG Grant (HKUST6203/99E)
文摘Alternating directions method is one of the approaches for solving linearly constrained separate monotone variational inequalities. Experience on applications has shown that the number of iteration significantly depends on the penalty for the system of linearly constrained equations and therefore the method with variable penalties is advantageous in practice. In this paper, we extend the Kontogiorgis and Meyer method [12] by removing the monotonicity assumption on the variable penalty matrices. Moreover, we introduce a self-adaptive rule that leads the method to be more efficient and insensitive for various initial penalties. Numerical results for a class of Fermat-Weber problems show that the modified method and its self-adaptive technique are proper and necessary in practice.
基金The Scientific Research Foundation of Nanjing University of Posts and Telecommunications(No.NY210049)
文摘A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is reformulated as a linear equality constrained problem where the objective function is separable. Then, by introducing the augmented Lagrangian function, the two variables are alternatively minimized by the Gauss-Seidel idea. Finally, the dual variable is updated. Because the approach makes full use of the special structure of the problem and decomposes the original problem into several low-dimensional sub-problems, the per iteration computational complexity of the approach is dominated by two fast Fourier transforms. Elementary experimental results indicate that the proposed approach is more stable and efficient compared with some state-of-the-art algorithms.
基金the National High Technology Research and Development Program of China(Grant No.2012AA011603)
文摘Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem.
基金Supported by the National Natural Science Foundation of China(61203021)the Key Science and Technology Program of Liaoning Province(2011216011)+1 种基金the Natural Science Foundation of Liaoning Province(2013020024)the Program for Liaoning Excellent Talents in Universities(LJQ2015061)
文摘Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1157117811801455)the Fundamental Research Funds of China West Normal University(Grant No.17E084)
文摘In this paper, we consider the convergence of the generalized alternating direction method of multipliers(GADMM) for solving linearly constrained nonconvex minimization model whose objective contains coupled functions. Under the assumption that the augmented Lagrangian function satisfies the Kurdyka-Lojasiewicz inequality, we prove that the sequence generated by the GADMM converges to a critical point of the augmented Lagrangian function when the penalty parameter in the augmented Lagrangian function is sufficiently large. Moreover, we also present some sufficient conditions guaranteeing the sublinear and linear rate of convergence of the algorithm.
基金Supported by the National Natural Science Foundation of China(Grant No.11971149,11871381)Natural Science Foundation of Henan Province for Youth(Grant No.202300410146)。
文摘The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12061045,12061046,11661056,11771198,11771347,91730306,41390454,11401293)the China Postdoctoral Science Foundation(Grant No.2015M571989)the Jiangxi Province Postdoctoral Science Foundation(Grant No.2015KY51)。
文摘The alternating direction method of multipliers(ADMM)is a widely used method for solving many convex minimization models arising in signal and image processing.In this paper,we propose an inertial ADMM for solving a two-block separable convex minimization problem with linear equality constraints.This algorithm is obtained by making use of the inertial Douglas-Rachford splitting algorithm to the corresponding dual of the primal problem.We study the convergence analysis of the proposed algorithm in infinite-dimensional Hilbert spaces.Furthermore,we apply the proposed algorithm on the robust principal component analysis problem and also compare it with other state-of-the-art algorithms.Numerical results demonstrate the advantage of the proposed algorithm.
文摘This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite difference scheme with second-order splitting error, the other two schemes have third-order splitting error, and the last one is an extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained for the first scheme and second one, respectively. Finally, two numerical examples are provided to illustrate the efficiency and accuracy of the methods.
基金the National Natural Science Foundation of China(61833012,61773162,61590924)the Natural Science Foundation of Shanghai(18ZR1420000)。
文摘This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merely modifying the couplings between different subsystems.To equip live systems with a quick response ability when modifying network topology,while keeping a satisfactory dynamic performance,a novel reconfiguration control scheme based on the alternating direction method of multipliers(ADMM)is presented.In this scheme,the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control.Meanwhile,by employing the powerful ADMM algorithm,the iterative formulas for solving the reconfigured optimization problem are obtained,which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response.Ultimately,the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics.
基金Supported by the National Natural Science Foundation of China(Grant Nos.6157209961320106008+2 种基金91230103)National Science and Technology Major Project(Grant Nos.2013ZX040050212014ZX04001011)
文摘Tensor robust principal component analysis(TRPCA) problem aims to separate a low-rank tensor and a sparse tensor from their sum. This problem has recently attracted considerable research attention due to its wide range of potential applications in computer vision and pattern recognition. In this paper, we propose a new model to deal with the TRPCA problem by an alternation minimization algorithm along with two adaptive rankadjusting strategies. For the underlying low-rank tensor, we simultaneously perform low-rank matrix factorizations to its all-mode matricizations; while for the underlying sparse tensor,a soft-threshold shrinkage scheme is applied. Our method can be used to deal with the separation between either an exact or an approximate low-rank tensor and a sparse one. We established the subsequence convergence of our algorithm in the sense that any limit point of the iterates satisfies the KKT conditions. When the iteration stops, the output will be modified by applying a high-order SVD approach to achieve an exactly low-rank final result as the accurate rank has been calculated. The numerical experiments demonstrate that our method could achieve better results than the compared methods.
文摘In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algorithm does not need a central node. Therefore, it has the characteristics of low communication burden and high privacy. In addition, numerical experiments are provided to validate the effectiveness of the proposed algorithm.
基金supported in part by the National Natural Science Foundation of China(11361018,11461015)Guangxi Natural Science Foundation(2014GXNSFFA118001)+3 种基金Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ15112,YQ16112)Guilin Science and Technology Project(20140127-2)the Innovation Project of Guangxi Graduate Education and Innovation Project of GUET Graduate Education(YJCXB201502)Guangxi Key Laboratory of Cryptography and Information Security(GCIS201624)
文摘In this study, we propose a linearized proximal alternating direction method with variable stepsize for solving total variation image reconstruction problems. Our method uses a linearized technique and the proximal function such that the closed form solutions of the subproblem can be easily derived.In the subproblem, we apply a variable stepsize, that is like Barzilai-Borwein stepsize, to accelerate the algorithm. Numerical results with parallel magnetic resonance imaging demonstrate the efficiency of the proposed algorithm.
基金Supported by the National Natural Science Foundaton of China(No.61340034)China Postdoctoral Science Foundation(No.2013M530873)the Research Program of Application Foundation and Advanced Technology of Tianjin(No.13JCYBJC15600)
文摘Computed tomography(CT) blurring caused by point spread function leads to errors in quantification and visualization. In this paper, multichannel blind CT image restoration is proposed to overcome the effect of point spread function. The main advantage from multichannel blind CT image restoration is to exploit the diversity and redundancy of information in different acquisitions. The proposed approach is based on a variable splitting to obtain an equivalent constrained optimization formulation, which is addressed with the alternating direction method of multipliers and simply implemented in the Fourier domain. Numerical experiments illustrate that our method obtains a higher average gain value of at least 1.21 d B in terms of Q metric than the other methods, and it requires only 7 iterations of alternating minimization to obtain a fast convergence.
基金Supported by National Natural Science Foundation of China (Grant Nos.52305127,52075414)China Postdoctoral Science Foundation (Grant No.2021M702595)。
文摘In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration.
基金The National Natural Science Foundation of China (No.61362001,61102043,61262084,20132BAB211030,20122BAB211015)the Basic Research Program of Shenzhen(No.JC201104220219A)
文摘A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
基金supported in Natural Science Foundation of Shandong Province,China(ZR2013FM018)。
文摘This paper aims to enhance the array Beamforming(BF) robustness by tackling issues related to BF weight state estimation encountered in Constant Modulus Blind Beamforming(CMBB). To achieve this, we introduce a novel approach that incorporates an L1-regularizer term in BF weight state estimation. We start by explaining the CMBB formation mechanism under conditions where there is a mismatch in the far-field signal model. Subsequently, we reformulate the BF weight state estimation challenge using a method known as variable-splitting, turning it into a noise minimization problem. This problem combines both linear and nonlinear quadratic terms with an L1-regularizer that promotes the sparsity. The optimization strategy is based on a variable-splitting method, implemented using the Alternating Direction Method of Multipliers(ADMM). Furthermore, a variable-splitting framework is developed to enhance BF weight state estimation, employing a Kalman Smoother(KS) optimization algorithm. The approach integrates the Rauch-TungStriebel smoother to perform posterior-smoothing state estimation by leveraging prior data. We provide proof of convergence for both linear and nonlinear CMBB state estimation technology using the variable-splitting KS and the iterated extended Kalman smoother. Simulations corroborate our theoretical analysis, showing that the proposed method achieves robust stability and effective convergence, even when faced with signal model mismatches.
基金the Yunnan Fundamental Research Projects(No.202301AT070452)the National Natural Science Foundation of China(No.61861023)。
文摘The structured low-rank model for parallel magnetic resonance(MR)imaging can efficiently reconstruct MR images with limited auto-calibration signals.To improve the reconstruction quality of MR images,we integrate the joint sparsity and sparsifying transform learning(JTL)into the simultaneous auto-calibrating and k-space estimation(SAKE)structured low-rank model,named JTLSAKE.The alternate direction method of multipliers is exploited to solve the resulting optimization problem,and the optimized gradient method is used to improve the convergence speed.In addition,a graphics processing unit is used to accelerate the proposed algorithm.The experimental results on four in vivo human datasets demonstrate that the reconstruction quality of the proposed algorithm is comparable to that of JTL-based low-rank modeling of local k-space neighborhoods with parallel imaging(JTL-PLORAKS),and the proposed algorithm is 46 times faster than the JTL-PLORAKS,requiring only 4 s to reconstruct a 200×200 pixels MR image with 8 channels.
文摘In this paper,we investigate the convergence of the generalized Bregman alternating direction method of multipliers(ADMM)for solving nonconvex separable problems with linear constraints.This algorithm relaxes the requirement of global Lipschitz continuity of differentiable functions that is often seen in many researches,and it incorporates the acceleration technique of the proximal point algorithm(PPA).As a result,the scope of application of the algorithm is broadened and its performance is enhanced.Under the assumption that the augmented Lagrangian function satisfies the Kurdyka-Lojasiewicz inequality,we demonstrate that the iterative sequence generated by the algorithm converges to a critical point of its augmented Lagrangian function when the penalty parameter in the augmented Lagrangian function is sufficiently large.Finally,we analyze the convergence rate of the algorithm.
基金the National Natural Science Foundation of China(No.61861023)the Yunnan Fundamental Research Project(No.202301AT070452)。
文摘Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstruction algorithms usually used nonadaptive sparsifying transforms,resulting in a limited reconstruction accuracy.Therefore,we proposed a new model for accurate parallel MRI reconstruction by combining the L0 norm regularization term based on the efficient sum of outer products dictionary learning(SOUPDIL)with the SENSE model,called SOUPDIL-SENSE.The SOUPDIL-SENSE model is mainly solved by utilizing the variable splitting and alternating direction method of multipliers techniques.The experimental results on four human datasets show that the proposed algorithm effectively promotes the image sparsity,eliminates the noise and artifacts of the reconstructed images,and improves the reconstruction accuracy.
基金support of The National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201)。
文摘Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.