To reduce the spectral distortion,a Hidden Markov Model-based narrowband speech bandwidth extension algorithm is presented.Firstly,the parameters which have higher mutual information with wideband envelope were extrac...To reduce the spectral distortion,a Hidden Markov Model-based narrowband speech bandwidth extension algorithm is presented.Firstly,the parameters which have higher mutual information with wideband envelope were extracted to constitute the feature vector,and then a posterior probability was calculated via the joint probability of the partial observation feature vector sequence and the markov states.Secondly,based on the posterior probability,the wideband envelope was estimated using Bayesian parameter estimation method and minimum mean square error criteria.For estimation of wideband excitation signal,intermediate frequency extension algorithm is proposed based on the harmonic correlation between the low frequency and high frequency.The experimental results show that,compared with the traditional bandwidth extension algorithm based on Hidden Markov Model,the average spectral distortion is reduced by 0.187 dB and the number of speech frame with spectral distortion over10dB is decreased by 34.3%.展开更多
Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,i...Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning.展开更多
Network virtualization(NV) is pushed forward by its proponents as a crucial attribute of next generation network, aiming at overcoming the gradual ossification of current networks, particularly to the worldwide Intern...Network virtualization(NV) is pushed forward by its proponents as a crucial attribute of next generation network, aiming at overcoming the gradual ossification of current networks, particularly to the worldwide Internet. Through virtualization, multiple customized virtual networks(VNs), requested by users, are allowed to coexist on the underlying substrate networks(SNs). In addition, the virtualization scheme contributes to sharing underlying physical resources simultaneously and seamlessly. However, multiple technical issues still stand in the way of NV successful implementation. One key technical issue is virtual network embedding(VNE), known as the resource allocation problem for NV. This paper conducts a survey of embedding algorithms for VNE problem. At first, the NV business model for VNE problem is presented. Then, the latest VNE problem description is presented. Main performance metrics for evaluating embedding algorithms are also involved. Afterwards, existing VNE algorithms are detailed, according to the novel proposed category approach. Next, key future research aspects of embedding algorithms are listed out. Finally, the paper is briefly concluded.展开更多
Feature selection is an active area in data mining research and development. It consists of efforts and contributions from a wide variety of communities, including statistics, machine learning, and pattern recognition...Feature selection is an active area in data mining research and development. It consists of efforts and contributions from a wide variety of communities, including statistics, machine learning, and pattern recognition. The diversity, on one hand, equips us with many methods and tools. On the other hand, the profusion of options causes confusion.This paper reviews various feature selection methods and identifies research challenges that are at the forefront of this exciting area.展开更多
With the increasing of data on the internet, data analysis has become inescapable to gain time and efficiency, especially in bibliographic information retrieval systems. We can estimate the number of actual scientific...With the increasing of data on the internet, data analysis has become inescapable to gain time and efficiency, especially in bibliographic information retrieval systems. We can estimate the number of actual scientific journals points to around 40</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">000 with about four million articles published each year. Machine learning and deep learning applied to recommender systems had become unavoidable whether in industry or in research. In this current, we propose an optimized interface for bibliographic information retrieval as a </span><span style="font-family:Verdana;">running example, which allows different kind of researchers to find their</span><span style="font-family:Verdana;"> needs following some relevant criteria through natural language understanding. Papers indexed in Web of Science and Scopus are in high demand. Natural language including text and linguistic-based techniques, such as tokenization, named entity recognition, syntactic and semantic analysis, are used to express natural language queries. Our Interface uses association rules to find more related papers for recommendation. Spanning trees are challenged to optimize the search process of the system.展开更多
<div style="text-align:justify;"> This paper studies a kind of urban security risk assessment model based on multi-label learning, which is transformed into the solution of linear equations through a s...<div style="text-align:justify;"> This paper studies a kind of urban security risk assessment model based on multi-label learning, which is transformed into the solution of linear equations through a series of transformations, and then the solution of linear equations is transformed into an optimization problem. Finally, this paper uses some classical optimization algorithms to solve these optimization problems, the convergence of the algorithm is proved, and the advantages and disadvantages of several optimization methods are compared. </div>展开更多
Rail systems are gradually becoming the most desirable form of transit infrastructure around the world, partly because they are becoming more environmentally friendly compared with airplanes and automobiles. This pape...Rail systems are gradually becoming the most desirable form of transit infrastructure around the world, partly because they are becoming more environmentally friendly compared with airplanes and automobiles. This paper examines the place of emerging countries in this move of implementing modern rail system that will eventually enhance the realization of a low-carbon society. Network model, transportation model and linear programming algorithms are used to model the present urban rail transport system in Nigeria, as an emerging country, in order to optimize it. Operational research methods, including simplex method and MODI, with the aids of computer software (excel solver and LIP solver) were adopted to solve the resulting models. The results showed that optimization of rail transport system will not only reduce carbon emission but also bring about economic development which is required for the eradication of prevalent poverty in these emerging countries.展开更多
文摘To reduce the spectral distortion,a Hidden Markov Model-based narrowband speech bandwidth extension algorithm is presented.Firstly,the parameters which have higher mutual information with wideband envelope were extracted to constitute the feature vector,and then a posterior probability was calculated via the joint probability of the partial observation feature vector sequence and the markov states.Secondly,based on the posterior probability,the wideband envelope was estimated using Bayesian parameter estimation method and minimum mean square error criteria.For estimation of wideband excitation signal,intermediate frequency extension algorithm is proposed based on the harmonic correlation between the low frequency and high frequency.The experimental results show that,compared with the traditional bandwidth extension algorithm based on Hidden Markov Model,the average spectral distortion is reduced by 0.187 dB and the number of speech frame with spectral distortion over10dB is decreased by 34.3%.
基金Supported by Ministerial Level Advanced Research Foundation(65822576)Beijing Municipal Education Commission(KM201310858004,KM201310858001)
文摘Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning.
基金supported by the National Key Research and Development of China under Grant 2018YFC1314903the National Natural Science Foundation of China under Grant 61372124 and Grant 61427801
文摘Network virtualization(NV) is pushed forward by its proponents as a crucial attribute of next generation network, aiming at overcoming the gradual ossification of current networks, particularly to the worldwide Internet. Through virtualization, multiple customized virtual networks(VNs), requested by users, are allowed to coexist on the underlying substrate networks(SNs). In addition, the virtualization scheme contributes to sharing underlying physical resources simultaneously and seamlessly. However, multiple technical issues still stand in the way of NV successful implementation. One key technical issue is virtual network embedding(VNE), known as the resource allocation problem for NV. This paper conducts a survey of embedding algorithms for VNE problem. At first, the NV business model for VNE problem is presented. Then, the latest VNE problem description is presented. Main performance metrics for evaluating embedding algorithms are also involved. Afterwards, existing VNE algorithms are detailed, according to the novel proposed category approach. Next, key future research aspects of embedding algorithms are listed out. Finally, the paper is briefly concluded.
文摘Feature selection is an active area in data mining research and development. It consists of efforts and contributions from a wide variety of communities, including statistics, machine learning, and pattern recognition. The diversity, on one hand, equips us with many methods and tools. On the other hand, the profusion of options causes confusion.This paper reviews various feature selection methods and identifies research challenges that are at the forefront of this exciting area.
文摘With the increasing of data on the internet, data analysis has become inescapable to gain time and efficiency, especially in bibliographic information retrieval systems. We can estimate the number of actual scientific journals points to around 40</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">000 with about four million articles published each year. Machine learning and deep learning applied to recommender systems had become unavoidable whether in industry or in research. In this current, we propose an optimized interface for bibliographic information retrieval as a </span><span style="font-family:Verdana;">running example, which allows different kind of researchers to find their</span><span style="font-family:Verdana;"> needs following some relevant criteria through natural language understanding. Papers indexed in Web of Science and Scopus are in high demand. Natural language including text and linguistic-based techniques, such as tokenization, named entity recognition, syntactic and semantic analysis, are used to express natural language queries. Our Interface uses association rules to find more related papers for recommendation. Spanning trees are challenged to optimize the search process of the system.
文摘<div style="text-align:justify;"> This paper studies a kind of urban security risk assessment model based on multi-label learning, which is transformed into the solution of linear equations through a series of transformations, and then the solution of linear equations is transformed into an optimization problem. Finally, this paper uses some classical optimization algorithms to solve these optimization problems, the convergence of the algorithm is proved, and the advantages and disadvantages of several optimization methods are compared. </div>
文摘Rail systems are gradually becoming the most desirable form of transit infrastructure around the world, partly because they are becoming more environmentally friendly compared with airplanes and automobiles. This paper examines the place of emerging countries in this move of implementing modern rail system that will eventually enhance the realization of a low-carbon society. Network model, transportation model and linear programming algorithms are used to model the present urban rail transport system in Nigeria, as an emerging country, in order to optimize it. Operational research methods, including simplex method and MODI, with the aids of computer software (excel solver and LIP solver) were adopted to solve the resulting models. The results showed that optimization of rail transport system will not only reduce carbon emission but also bring about economic development which is required for the eradication of prevalent poverty in these emerging countries.