The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powe...The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.展开更多
Mining frequent pattern in transaction database, time series databases, and many other kinds of databases have been studied popularly in data mining research. Most of the previous studies adopt Apriori like candidat...Mining frequent pattern in transaction database, time series databases, and many other kinds of databases have been studied popularly in data mining research. Most of the previous studies adopt Apriori like candidate set generation and test approach. However, candidate set generation is very costly. Han J. proposed a novel algorithm FP growth that could generate frequent pattern without candidate set. Based on the analysis of the algorithm FP growth, this paper proposes a concept of equivalent FP tree and proposes an improved algorithm, denoted as FP growth * , which is much faster in speed, and easy to realize. FP growth * adopts a modified structure of FP tree and header table, and only generates a header table in each recursive operation and projects the tree to the original FP tree. The two algorithms get the same frequent pattern set in the same transaction database, but the performance study on computer shows that the speed of the improved algorithm, FP growth * , is at least two times as fast as that of FP growth.展开更多
This paper presents an efficient pattern matching algorithm (FSW). FSW improves the searching process for a pattern in a text. It scans the text with the help of four sliding windows. The windows are equal to the leng...This paper presents an efficient pattern matching algorithm (FSW). FSW improves the searching process for a pattern in a text. It scans the text with the help of four sliding windows. The windows are equal to the length of the pattern, allowing multiple alignments in the searching process. The text is divided into two parts;each part is scanned from both sides simultaneously using two sliding windows. The four windows slide in parallel in both parts of the text. The comparisons done between the text and the pattern are done from both of the pattern sides in parallel. The conducted experiments show that FSW achieves the best overall results in the number of attempts and the number of character comparisons compared to the pattern matching algorithms: Two Sliding Windows (TSW), Enhanced Two Sliding Windows algorithm (ETSW) and Berry-Ravindran algorithm (BR). The best time case is calculated and found to be??while the average case time complexity is??.展开更多
Pattern matching is a very important topic in computer science. It has been used in various applications such as information retrieval, virus scanning, DNA sequence analysis, data mining, machine learning, network sec...Pattern matching is a very important topic in computer science. It has been used in various applications such as information retrieval, virus scanning, DNA sequence analysis, data mining, machine learning, network security and pattern recognition. This paper has presented a new pattern matching algorithm—Enhanced ERS-A, which is an improvement over ERS-S algorithm. In ERS-A, two sliding windows are used to scan the text from the left and the right simultaneously. The proposed algorithm also scans the text from the left and the right simultaneously as well as making comparisons with the pattern from both sides simultaneously. The comparisons done between the text and the pattern are done from both sides in parallel. The shift technique used in the Enhanced ERS-A is the four consecutive characters in the text immediately following the pattern window. The experimental results show that the Enhanced ERS-A has enhanced the process of pattern matching by reducing the number of comparisons performed.展开更多
Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a...Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a novel algorithm updating for global frequent patterns-IPARUC. A rapid clustering method is introduced to divide database into n parts in IPARUC firstly, where the data are similar in the same part. Then, the nodes in the tree are adjusted dynamically in inserting process by "pruning and laying back" to keep the frequency descending order so that they can be shared to approaching optimization. Finally local frequent itemsets mined from each local dataset are merged into global frequent itemsets. The results of experimental study are very encouraging. It is obvious from experiment that IPARUC is more effective and efficient than other two contrastive methods. Furthermore, there is significant application potential to a prototype of Web log Analyzer in web usage mining that can help us to discover useful knowledge effectively, even help managers making decision.展开更多
The Genetic Algorithm (GA) has been a pop research field, but there is little concern on GA in view of Software Engineering and this result in a series of problems. In this paper, we extract a GA's software patter...The Genetic Algorithm (GA) has been a pop research field, but there is little concern on GA in view of Software Engineering and this result in a series of problems. In this paper, we extract a GA's software pattern, draw a model diagram of the reusable objects, analyze the advantages and disadvantages of the pattern, and give a sample code at the end. We are then able to improve the reusability and expansibility of GA. The results make it easier to program a new GA code by using some existing successful operators, thereby reducing the difficulties and workload of programming a GA's code, and facilitate the GA application.展开更多
Pattern discovery from time series is of fundamental importance. Most of the algorithms of pattern discovery in time series capture the values of time series based on some kinds of similarity measures. Affected by the...Pattern discovery from time series is of fundamental importance. Most of the algorithms of pattern discovery in time series capture the values of time series based on some kinds of similarity measures. Affected by the scale and baseline, value-based methods bring about problem when the objective is to capture the shape. Thus, a similarity measure based on shape, Sh measure, is originally proposed, andthe properties of this similarity and corresponding proofs are given. Then a time series shape pattern discovery algorithm based on Sh measure is put forward. The proposed algorithm is terminated in finite iteration with given computational and storage complexity. Finally the experiments on synthetic datasets and sunspot datasets demonstrate that the time series shape pattern algorithm is valid.展开更多
A multiphase microscopic interference system is designed to measure the height of cell which is important to the research of collective cell migration in physiology and medicine. This sys- tem can quantitatively measu...A multiphase microscopic interference system is designed to measure the height of cell which is important to the research of collective cell migration in physiology and medicine. This sys- tem can quantitatively measure cell height across a living monolayer without knowing the refractive index of cells. For the interference pattern, because the phases are all wrapped between - π to π, it is necessary to get the real phase through phase unwrapping,a method to restore the wrapped phase data of the object by using numerical calculations. Three representative algorithms are selected to unwrap the interference pattern of ceils: branch-cut method, quality-guided method and network method. Although each of them can restore the phase, their performances are obviously different. We compare these methods and find that branch-cut method needs the smallest execution time and can obtain good unwrapped patterns when noises are not serious.展开更多
Pattern matching is a very important algorithm used in many applications such as search engine and DNA analysis. They are aiming to find a pattern in a text. This paper proposes a Pattern Matching Algorithm Using Chan...Pattern matching is a very important algorithm used in many applications such as search engine and DNA analysis. They are aiming to find a pattern in a text. This paper proposes a Pattern Matching Algorithm Using Changing Consecutive Characters (PMCCC) to make the searching pro- cess of the algorithm faster. PMCCC enhances the shift process that determines how the pattern moves in case of the occurrence of the mismatch between the pattern and the text. It enhances the Berry Ravindran (BR) shift function by using m consecutive characters where m is the pattern length. The formal basis and the algorithms are presented. The experimental results show that PMCCC made enhancements in searching process by reducing the number of comparisons and the number of attempts. Comparing the results of PMCCC with other related algorithms has shown significant enhancements in average number of comparisons and average number of attempts.展开更多
Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting corre...Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits.展开更多
Transversal distribution of the steel strip thickness in the entry section of the cold rolling mill seriously affects to the flatness and transversal thickness precision of the final products. Pattern clustering metho...Transversal distribution of the steel strip thickness in the entry section of the cold rolling mill seriously affects to the flatness and transversal thickness precision of the final products. Pattern clustering method is introduced into the steel rolling field and used in the patterns recognition of transversal distribution of the steel strip thickness. The well-known k-means clustering algorithm has the advantage of being easily completed, but still has some drawbacks. An improved k-means clustering algorithm is presented, and the main improvements include: (1) the initial clustering points are preselected according to the density queue of data objects; and (2) Mahalanobis distance is applied instead of Euclidean distance in the actual application. Compared to the patterns obtained from the common kmeans algorithm, the patterns identified by the improved algorithm show that the improved clustering algorithm is well suitable for the patterns' recognition of transversal distribution of steel strip thickness and it will be useful in online quality control system.展开更多
Based on the fabricated 12-element cavity-backed microstrip sector cylinder array,a novel hybrid alternate projection algorithm(HAPA),which combines analytical method with numerical techniques effectively,is propose...Based on the fabricated 12-element cavity-backed microstrip sector cylinder array,a novel hybrid alternate projection algorithm(HAPA),which combines analytical method with numerical techniques effectively,is proposed for synthesizing the pattern of practical conformal array.The algorithm applies the variable direction aperture projection method with mutual coupling correction techniques to provide the good initial excitations of elements to the enhanced alternate projection algorithm(EAPA).In order to do further optimization,which improves the convergent speed of the algorithm significantly.Finally,the HAPA has been applied to the fabricated sector cylinder array with mutual coupling considered.The results of synthesized patterns,such as low sidelobe with null points formed pattern,beam scanning with low sidelobe pattern and the shaped beam pattern are presented.It demonstrates the validity of HAPA in practical conformal array synthesis.展开更多
As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays,a hybrid numerical synthesis method based on adaptive principle ...As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays,a hybrid numerical synthesis method based on adaptive principle and genetic algorithm was presented in this paper.First,based on the adaptive theory,a given array was supposed as an adaptive array and its sidelobes were reduced by assigning a number of interference signals in the sidelobe region.An initial beam pattern was obtained after several iterations and adjustments of the interference intensity,and based on its parameters,a desired pattern was created.Then,an objective function based on the difference between the designed and desired patterns can be constructed.The pattern can be optimized by using the genetic algorithm to minimize the objective function.A design example for a double-circular array demonstrates the effectiveness of this method.Compared with the approaches existing before,the proposed method can reduce the sidelobe effectively and achieve less synthesis magnitude error in the mainlobe.The method can search for optimum attainable pattern for the specific elements if the desired pattern can not be found.展开更多
This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><...This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span>展开更多
A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone con...A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone conformal phased arrays are projected to the tangent plane in one generatrix of the truncated cone. Then two dimensional (2D) Chebyshev amplitude distribution optimization is respectively used in two mutual vertical directions of the tangent plane. According to the location of the elements, the excitation current amplitude distribution of each element on the conformal structure is derived reversely, then the excitation current amplitude is further optimized by using the genetic algorithm (GA). A truncated cone problem with 8x8 elements on it, and a 3D pattern desired side lobe level (SLL) up to 35 dB, is studied. By using the hybrid method, the optimal goal is accomplished with acceptable CPU time, which indicates that this hybrid method for the low sidelobe synthesis is feasible.展开更多
In the XML community, exact queries allow users to specify exactly what they want to check and/or retrieve in an XML document. When they are applied to a semi-structured document or to a document with an overly comple...In the XML community, exact queries allow users to specify exactly what they want to check and/or retrieve in an XML document. When they are applied to a semi-structured document or to a document with an overly complex model, the lack or the ignorance of the explicit document model (DTD—Document Type Definition, Schema, etc.) increases the risk of obtaining an empty result set when the query is too specific, or, too large result set when it is too vague (e.g. it contains wildcards such as “*”). The reason is that in both cases, users write queries according to the document model they have in mind;this can be very far from the one that can actually be extracted from the document. Opposed to exact queries, preference queries are more flexible and can be relaxed to expand the search space during their evaluations. Indeed, during their evaluation, certain constraints (the preferences they contain) can be relaxed if necessary to avoid precisely empty results;moreover, the returned answers can be filtered to retain only the best ones. This paper presents an algorithm for evaluating such queries inspired by the TreeMatch algorithm proposed by Yao et al. for exact queries. In the proposed algorithm, the best answers are obtained by using an adaptation of the Skyline operator (defined in relational databases) in the context of documents (trees) to incrementally filter into the partial solutions set, those which satisfy the maximum of preferential constraints. The only restriction imposed on documents is No-Self-Containment.展开更多
Although many computing algorithms have been developed to analyze the relationship between land use pattern and driving forces (RLPDF), little has been done to assess and reduce the uncertainty of predictions. In this...Although many computing algorithms have been developed to analyze the relationship between land use pattern and driving forces (RLPDF), little has been done to assess and reduce the uncertainty of predictions. In this study, we investigated RLPDF based on 1990, 2005 and 2012 datasets at two spatial scales using eight state-of-the-art single computing algorithms and four consensus methods in Jinjing rive catchment in Hunan Province, China. At the entire catchment scale, the mean AUC values were between 0.715 (ANN) and 0.948 (RF) for the single-algorithms, and from 0.764 to 0.962 for the consensus methods. At the subcatchment scale, the mean AUC values between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. At the subcatchment scale, the mean AUC values were between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. The result suggested that among the eight single computing algorithms, RF performed the best overall for woodland and paddy field;consensus method showed higher predictive performance for woodland and paddy field models than the single computing algorithms. We compared the simulation results of the best - and worst-performing algorithms for the entire catchment in 2012, and found that approximately 72.5% of woodland and 72.4% of paddy field had probabilities of occurrence of less than 0.1, and 3.6% of woodland and 14.5% of paddy field had probabilities of occurrence of more than 0.5. In other words, the simulation errors associated with using different computing algorithms can be up to 14.5% if a probability level of 0.5 is set as the threshold. The results of this study showed that the choice of modeling approaches can greatly affect the accuracy of RLPDF prediction. The computing algorithms for specific RLPDF tasks in specific regions have to be localized and optimized.展开更多
基金supported by the National Natural Science Foundation of China(61271250)
文摘The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.
基金theFundoftheNationalManagementBureauofTraditionalChineseMedicine(No .2 0 0 0 J P 5 4 )
文摘Mining frequent pattern in transaction database, time series databases, and many other kinds of databases have been studied popularly in data mining research. Most of the previous studies adopt Apriori like candidate set generation and test approach. However, candidate set generation is very costly. Han J. proposed a novel algorithm FP growth that could generate frequent pattern without candidate set. Based on the analysis of the algorithm FP growth, this paper proposes a concept of equivalent FP tree and proposes an improved algorithm, denoted as FP growth * , which is much faster in speed, and easy to realize. FP growth * adopts a modified structure of FP tree and header table, and only generates a header table in each recursive operation and projects the tree to the original FP tree. The two algorithms get the same frequent pattern set in the same transaction database, but the performance study on computer shows that the speed of the improved algorithm, FP growth * , is at least two times as fast as that of FP growth.
文摘This paper presents an efficient pattern matching algorithm (FSW). FSW improves the searching process for a pattern in a text. It scans the text with the help of four sliding windows. The windows are equal to the length of the pattern, allowing multiple alignments in the searching process. The text is divided into two parts;each part is scanned from both sides simultaneously using two sliding windows. The four windows slide in parallel in both parts of the text. The comparisons done between the text and the pattern are done from both of the pattern sides in parallel. The conducted experiments show that FSW achieves the best overall results in the number of attempts and the number of character comparisons compared to the pattern matching algorithms: Two Sliding Windows (TSW), Enhanced Two Sliding Windows algorithm (ETSW) and Berry-Ravindran algorithm (BR). The best time case is calculated and found to be??while the average case time complexity is??.
文摘Pattern matching is a very important topic in computer science. It has been used in various applications such as information retrieval, virus scanning, DNA sequence analysis, data mining, machine learning, network security and pattern recognition. This paper has presented a new pattern matching algorithm—Enhanced ERS-A, which is an improvement over ERS-S algorithm. In ERS-A, two sliding windows are used to scan the text from the left and the right simultaneously. The proposed algorithm also scans the text from the left and the right simultaneously as well as making comparisons with the pattern from both sides simultaneously. The comparisons done between the text and the pattern are done from both sides in parallel. The shift technique used in the Enhanced ERS-A is the four consecutive characters in the text immediately following the pattern window. The experimental results show that the Enhanced ERS-A has enhanced the process of pattern matching by reducing the number of comparisons performed.
基金Supported by the National Natural Science Foundation of China(60472099)Ningbo Natural Science Foundation(2006A610017)
文摘Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a novel algorithm updating for global frequent patterns-IPARUC. A rapid clustering method is introduced to divide database into n parts in IPARUC firstly, where the data are similar in the same part. Then, the nodes in the tree are adjusted dynamically in inserting process by "pruning and laying back" to keep the frequency descending order so that they can be shared to approaching optimization. Finally local frequent itemsets mined from each local dataset are merged into global frequent itemsets. The results of experimental study are very encouraging. It is obvious from experiment that IPARUC is more effective and efficient than other two contrastive methods. Furthermore, there is significant application potential to a prototype of Web log Analyzer in web usage mining that can help us to discover useful knowledge effectively, even help managers making decision.
基金The research has gained the stake of Middleware Software Division of Software Group of F ujitsu L imitedJapanthe Project T
文摘The Genetic Algorithm (GA) has been a pop research field, but there is little concern on GA in view of Software Engineering and this result in a series of problems. In this paper, we extract a GA's software pattern, draw a model diagram of the reusable objects, analyze the advantages and disadvantages of the pattern, and give a sample code at the end. We are then able to improve the reusability and expansibility of GA. The results make it easier to program a new GA code by using some existing successful operators, thereby reducing the difficulties and workload of programming a GA's code, and facilitate the GA application.
文摘Pattern discovery from time series is of fundamental importance. Most of the algorithms of pattern discovery in time series capture the values of time series based on some kinds of similarity measures. Affected by the scale and baseline, value-based methods bring about problem when the objective is to capture the shape. Thus, a similarity measure based on shape, Sh measure, is originally proposed, andthe properties of this similarity and corresponding proofs are given. Then a time series shape pattern discovery algorithm based on Sh measure is put forward. The proposed algorithm is terminated in finite iteration with given computational and storage complexity. Finally the experiments on synthetic datasets and sunspot datasets demonstrate that the time series shape pattern algorithm is valid.
基金Supported by the International Technology Cooperation Projects of BIT(GZ 20110451)
文摘A multiphase microscopic interference system is designed to measure the height of cell which is important to the research of collective cell migration in physiology and medicine. This sys- tem can quantitatively measure cell height across a living monolayer without knowing the refractive index of cells. For the interference pattern, because the phases are all wrapped between - π to π, it is necessary to get the real phase through phase unwrapping,a method to restore the wrapped phase data of the object by using numerical calculations. Three representative algorithms are selected to unwrap the interference pattern of ceils: branch-cut method, quality-guided method and network method. Although each of them can restore the phase, their performances are obviously different. We compare these methods and find that branch-cut method needs the smallest execution time and can obtain good unwrapped patterns when noises are not serious.
文摘Pattern matching is a very important algorithm used in many applications such as search engine and DNA analysis. They are aiming to find a pattern in a text. This paper proposes a Pattern Matching Algorithm Using Changing Consecutive Characters (PMCCC) to make the searching pro- cess of the algorithm faster. PMCCC enhances the shift process that determines how the pattern moves in case of the occurrence of the mismatch between the pattern and the text. It enhances the Berry Ravindran (BR) shift function by using m consecutive characters where m is the pattern length. The formal basis and the algorithms are presented. The experimental results show that PMCCC made enhancements in searching process by reducing the number of comparisons and the number of attempts. Comparing the results of PMCCC with other related algorithms has shown significant enhancements in average number of comparisons and average number of attempts.
文摘Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits.
基金Sponsored by National Natural Science Foundation of China(50705057)
文摘Transversal distribution of the steel strip thickness in the entry section of the cold rolling mill seriously affects to the flatness and transversal thickness precision of the final products. Pattern clustering method is introduced into the steel rolling field and used in the patterns recognition of transversal distribution of the steel strip thickness. The well-known k-means clustering algorithm has the advantage of being easily completed, but still has some drawbacks. An improved k-means clustering algorithm is presented, and the main improvements include: (1) the initial clustering points are preselected according to the density queue of data objects; and (2) Mahalanobis distance is applied instead of Euclidean distance in the actual application. Compared to the patterns obtained from the common kmeans algorithm, the patterns identified by the improved algorithm show that the improved clustering algorithm is well suitable for the patterns' recognition of transversal distribution of steel strip thickness and it will be useful in online quality control system.
文摘Based on the fabricated 12-element cavity-backed microstrip sector cylinder array,a novel hybrid alternate projection algorithm(HAPA),which combines analytical method with numerical techniques effectively,is proposed for synthesizing the pattern of practical conformal array.The algorithm applies the variable direction aperture projection method with mutual coupling correction techniques to provide the good initial excitations of elements to the enhanced alternate projection algorithm(EAPA).In order to do further optimization,which improves the convergent speed of the algorithm significantly.Finally,the HAPA has been applied to the fabricated sector cylinder array with mutual coupling considered.The results of synthesized patterns,such as low sidelobe with null points formed pattern,beam scanning with low sidelobe pattern and the shaped beam pattern are presented.It demonstrates the validity of HAPA in practical conformal array synthesis.
文摘As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays,a hybrid numerical synthesis method based on adaptive principle and genetic algorithm was presented in this paper.First,based on the adaptive theory,a given array was supposed as an adaptive array and its sidelobes were reduced by assigning a number of interference signals in the sidelobe region.An initial beam pattern was obtained after several iterations and adjustments of the interference intensity,and based on its parameters,a desired pattern was created.Then,an objective function based on the difference between the designed and desired patterns can be constructed.The pattern can be optimized by using the genetic algorithm to minimize the objective function.A design example for a double-circular array demonstrates the effectiveness of this method.Compared with the approaches existing before,the proposed method can reduce the sidelobe effectively and achieve less synthesis magnitude error in the mainlobe.The method can search for optimum attainable pattern for the specific elements if the desired pattern can not be found.
文摘This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span>
基金supported by the Fundamental Research Funds for the Central Universities(YWF-13D2-XX-13)the National High-tech Research and Development Program(863 Program)(2008AA121802)
文摘A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone conformal phased arrays are projected to the tangent plane in one generatrix of the truncated cone. Then two dimensional (2D) Chebyshev amplitude distribution optimization is respectively used in two mutual vertical directions of the tangent plane. According to the location of the elements, the excitation current amplitude distribution of each element on the conformal structure is derived reversely, then the excitation current amplitude is further optimized by using the genetic algorithm (GA). A truncated cone problem with 8x8 elements on it, and a 3D pattern desired side lobe level (SLL) up to 35 dB, is studied. By using the hybrid method, the optimal goal is accomplished with acceptable CPU time, which indicates that this hybrid method for the low sidelobe synthesis is feasible.
文摘In the XML community, exact queries allow users to specify exactly what they want to check and/or retrieve in an XML document. When they are applied to a semi-structured document or to a document with an overly complex model, the lack or the ignorance of the explicit document model (DTD—Document Type Definition, Schema, etc.) increases the risk of obtaining an empty result set when the query is too specific, or, too large result set when it is too vague (e.g. it contains wildcards such as “*”). The reason is that in both cases, users write queries according to the document model they have in mind;this can be very far from the one that can actually be extracted from the document. Opposed to exact queries, preference queries are more flexible and can be relaxed to expand the search space during their evaluations. Indeed, during their evaluation, certain constraints (the preferences they contain) can be relaxed if necessary to avoid precisely empty results;moreover, the returned answers can be filtered to retain only the best ones. This paper presents an algorithm for evaluating such queries inspired by the TreeMatch algorithm proposed by Yao et al. for exact queries. In the proposed algorithm, the best answers are obtained by using an adaptation of the Skyline operator (defined in relational databases) in the context of documents (trees) to incrementally filter into the partial solutions set, those which satisfy the maximum of preferential constraints. The only restriction imposed on documents is No-Self-Containment.
文摘Although many computing algorithms have been developed to analyze the relationship between land use pattern and driving forces (RLPDF), little has been done to assess and reduce the uncertainty of predictions. In this study, we investigated RLPDF based on 1990, 2005 and 2012 datasets at two spatial scales using eight state-of-the-art single computing algorithms and four consensus methods in Jinjing rive catchment in Hunan Province, China. At the entire catchment scale, the mean AUC values were between 0.715 (ANN) and 0.948 (RF) for the single-algorithms, and from 0.764 to 0.962 for the consensus methods. At the subcatchment scale, the mean AUC values between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. At the subcatchment scale, the mean AUC values were between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. The result suggested that among the eight single computing algorithms, RF performed the best overall for woodland and paddy field;consensus method showed higher predictive performance for woodland and paddy field models than the single computing algorithms. We compared the simulation results of the best - and worst-performing algorithms for the entire catchment in 2012, and found that approximately 72.5% of woodland and 72.4% of paddy field had probabilities of occurrence of less than 0.1, and 3.6% of woodland and 14.5% of paddy field had probabilities of occurrence of more than 0.5. In other words, the simulation errors associated with using different computing algorithms can be up to 14.5% if a probability level of 0.5 is set as the threshold. The results of this study showed that the choice of modeling approaches can greatly affect the accuracy of RLPDF prediction. The computing algorithms for specific RLPDF tasks in specific regions have to be localized and optimized.