期刊文献+
共找到3,210篇文章
< 1 2 161 >
每页显示 20 50 100
Optimized Deployment Method for Finite Access Points Based on Virtual Force Fusion Bat Algorithm
1
作者 Jian Li Qing Zhang +2 位作者 Tong Yang Yu’an Chen Yongzhong Zhan 《Computer Modeling in Engineering & Sciences》 2025年第9期3029-3051,共23页
In the deployment of wireless networks in two-dimensional outdoor campus spaces,aiming at the problem of efficient coverage of the monitoring area by limited number of access points(APs),this paper proposes a deployme... In the deployment of wireless networks in two-dimensional outdoor campus spaces,aiming at the problem of efficient coverage of the monitoring area by limited number of access points(APs),this paper proposes a deployment method of multi-objective optimization with virtual force fusion bat algorithm(VFBA)using the classical four-node regular distribution as an entry point.The introduction of Lévy flight strategy for bat position updating helps to maintain the population diversity,reduce the premature maturity problem caused by population convergence,avoid the over aggregation of individuals in the local optimal region,and enhance the superiority in global search;the virtual force algorithm simulates the attraction and repulsion between individuals,which enables individual bats to precisely locate the optimal solution within the search space.At the same time,the fusion effect of virtual force prompts the bat individuals to move faster to the potential optimal solution.To validate the effectiveness of the fusion algorithm,the benchmark test function is selected for simulation testing.Finally,the simulation result verifies that the VFBA achieves superior coverage and effectively reduces node redundancy compared to the other three regular layout methods.The VFBA also shows better coverage results when compared to other optimization algorithms. 展开更多
关键词 Multi-objective optimization deployment virtual force algorithm bat algorithm fusion algorithm
在线阅读 下载PDF
Fusion Algorithm Based on Improved A^(*)and DWA for USV Path Planning
2
作者 Changyi Li Lei Yao Chao Mi 《哈尔滨工程大学学报(英文版)》 2025年第1期224-237,共14页
The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,wh... The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,which is not conducive to the control of USV and also affects navigation safety.In this paper,these problems were addressed through the following improvements.First,the path search angle and security were comprehensively considered,and a security expansion strategy of nodes based on the 5×5 neighborhood was proposed.The A^(*)algorithm search neighborhood was expanded from 3×3 to 5×5,and safe nodes were screened out for extension via the node security expansion strategy.This algorithm can also optimize path search angles while improving path security.Second,the distance from the current node to the target node was introduced into the heuristic function.The efficiency of the A^(*)algorithm was improved,and the path was smoothed using the Floyd algorithm.For the dynamic adjustment of the weight to improve the efficiency of DWA,the distance from the USV to the target point was introduced into the evaluation function of the dynamic-window approach(DWA)algorithm.Finally,combined with the local target point selection strategy,the optimized DWA algorithm was performed for local path planning.The experimental results show the smooth and safe path planned by the fusion algorithm,which can successfully avoid dynamic obstacles and is effective and feasible in path planning for USVs. 展开更多
关键词 Improved A^(*)algorithm Optimized DWA algorithm Unmanned surface vehicles Path planning fusion algorithm
在线阅读 下载PDF
Multi-sensor Hybrid Fusion Algorithm Based on Adaptive Square-root Cubature Kalman Filter 被引量:6
3
作者 Xiaogong Lin Shusheng Xu Yehai Xie 《Journal of Marine Science and Application》 2013年第1期106-111,共6页
In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate r... In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate results and diverges by time. This study introduces an adaptive SRCKF algorithm with the filter gain correction for the case of measurement malfunctions. By proposing a switching criterion, an optimal filter is selected from the adaptive and conventional SRCKF according to the measurement quality. A subsystem soft fault detection algorithm is built with the filter residual. Utilizing a clear subsystem fault coefficient, the faulty subsystem is isolated as a result of the system reconstruction. In order to improve the performance of the multi-sensor system, a hybrid fusion algorithm is presented based on the adaptive SRCKF. The state and error covariance matrix are also predicted by the priori fusion estimates, and are updated by the predicted and estimated information of subsystems. The proposed algorithms were applied to the vessel dynamic positioning system simulation. They were compared with normal SRCKF and local estimation weighted fusion algorithm. The simulation results show that the presented adaptive SRCKF improves the robustness of subsystem filtering, and the hybrid fusion algorithm has the better performance. The simulation verifies the effectiveness of the proposed algorithms. 展开更多
关键词 hybrid fusion algorithm square-root cubature Kalman filter adaptive filter fault detection
在线阅读 下载PDF
An Improved Medical Image Fusion Algorithm for Anatomical and Functional Medical Images 被引量:2
4
作者 CHEN Mei-ling TAO Ling QIAN Zhi-yu 《Chinese Journal of Biomedical Engineering(English Edition)》 2009年第2期84-92,共9页
In recent years,many medical image fusion methods had been exploited to derive useful information from multimodality medical image data,but,not an appropriate fusion algorithm for anatomical and functional medical ima... In recent years,many medical image fusion methods had been exploited to derive useful information from multimodality medical image data,but,not an appropriate fusion algorithm for anatomical and functional medical images.In this paper,the traditional method of wavelet fusion is improved and a new fusion algorithm of anatomical and functional medical images,in which high-frequency and low-frequency coefficients are studied respectively.When choosing high-frequency coefficients,the global gradient of each sub-image is calculated to realize adaptive fusion,so that the fused image can reserve the functional information;while choosing the low coefficients is based on the analysis of the neighborbood region energy,so that the fused image can reserve the anatomical image's edge and texture feature.Experimental results and the quality evaluation parameters show that the improved fusion algorithm can enhance the edge and texture feature and retain the function information and anatomical information effectively. 展开更多
关键词 medical image fusion wavelet transform fusion algorithm quality evaluation
在线阅读 下载PDF
Adaptive Multisensor Tracking Fusion Algorithm for Air-borne Distributed Passive Sensor Network
5
作者 Zhen Ding Hongcai Zhang & Guanzhong Dai (Department of Automatic Control, Northwestern Polytechnical UniversityShaanxi, Xi’an 710072, P.R.China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第3期15-23,共9页
Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new... Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new error analysis method for two passive sensor tracking system is presented and the error equations are deduced in detail. Based on the equations, we carry out theoretical computation and Monte Carlo computer simulation. The results show the correctness of our error computation equations. With the error equations, we present multiple 'two station'fusion algorithm using adaptive pseudo measurement equations. This greatly enhances the tracking performance and makes the algorithm convergent very fast and not sensitive to initial conditions.Simulation results prove the correctness of our new algorithm. 展开更多
关键词 Passive tracking system Error analysis fusion algorithm Distributed passive sensornetwork Distributed estimation.
在线阅读 下载PDF
Analysis and Evaluation of IKONOS Image Fusion Algorithm Based on Land Cover Classification
6
作者 Xia JING Yan BAO 《Asian Agricultural Research》 2015年第1期52-56 60,60,共6页
Different fusion algorithm has its own advantages and limitations,so it is very difficult to simply evaluate the good points and bad points of the fusion algorithm. Whether an algorithm was selected to fuse object ima... Different fusion algorithm has its own advantages and limitations,so it is very difficult to simply evaluate the good points and bad points of the fusion algorithm. Whether an algorithm was selected to fuse object images was also depended upon the sensor types and special research purposes. Firstly,five fusion methods,i. e. IHS,Brovey,PCA,SFIM and Gram-Schmidt,were briefly described in the paper. And then visual judgment and quantitative statistical parameters were used to assess the five algorithms. Finally,in order to determine which one is the best suitable fusion method for land cover classification of IKONOS image,the maximum likelihood classification( MLC) was applied using the above five fusion images. The results showed that the fusion effect of SFIM transform and Gram-Schmidt transform were better than the other three image fusion methods in spatial details improvement and spectral information fidelity,and Gram-Schmidt technique was superior to SFIM transform in the aspect of expressing image details. The classification accuracy of the fused image using Gram-Schmidt and SFIM algorithms was higher than that of the other three image fusion methods,and the overall accuracy was greater than 98%. The IHS-fused image classification accuracy was the lowest,the overall accuracy and kappa coefficient were 83. 14% and 0. 76,respectively. Thus the IKONOS fusion images obtained by the Gram-Schmidt and SFIM were better for improving the land cover classification accuracy. 展开更多
关键词 IKONOS IMAGE fusion algorithm COMPARISON Evaluatio
在线阅读 下载PDF
Chlorophyll-a Estimation in Tachibana Bay by Data Fusion of GOCI and MODIS Using Linear Combination Index Algorithm
7
作者 Yuji Sakuno Keita Makio +2 位作者 Kazuhiko Koike Maung-Saw-Htoo-Thaw   Shigeru Kitahara 《Advances in Remote Sensing》 2013年第4期292-296,共5页
This study discusses the fusion of chlorophyll-a (Chl.a) estimates around Tachibana Bay (Nagasaki Prefecture, Japan) obtained from MODIS and GOCI satellite data. First, the equation of GOCI LCI was theoretically calcu... This study discusses the fusion of chlorophyll-a (Chl.a) estimates around Tachibana Bay (Nagasaki Prefecture, Japan) obtained from MODIS and GOCI satellite data. First, the equation of GOCI LCI was theoretically calculated on the basis of the linear combination index (LCI) method proposed by Frouin et al. (2006). Next, assuming a linear relationship between them, the MODIS LCI and GOCI LCI methods were compared by using the Rayleigh reflectance product dataset of GOCI and MODIS, collected on July 8, July 25, and July 31, 2012. The results were found to be correlated significantly. GOCI Chl.a estimates of the finally proposed method favorably agreed with the in-situ Chl.a data in Tachibana Bay. 展开更多
关键词 CHLOROPHYLL-A LCI algorithm GOCI MODIS Data fusion
暂未订购
Optimizing slope safety factor prediction via stacking using sparrow search algorithm for multi-layer machine learning regression models 被引量:4
8
作者 SHUI Kuan HOU Ke-peng +2 位作者 HOU Wen-wen SUN Jun-long SUN Hua-fen 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2852-2868,共17页
The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration o... The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration of the influencing factors,leading to large errors in their calculations.Therefore,a stacking ensemble learning model(stacking-SSAOP)based on multi-layer regression algorithm fusion and optimized by the sparrow search algorithm is proposed for predicting the slope safety factor.In this method,the density,cohesion,friction angle,slope angle,slope height,and pore pressure ratio are selected as characteristic parameters from the 210 sets of established slope sample data.Random Forest,Extra Trees,AdaBoost,Bagging,and Support Vector regression are used as the base model(inner loop)to construct the first-level regression algorithm layer,and XGBoost is used as the meta-model(outer loop)to construct the second-level regression algorithm layer and complete the construction of the stacked learning model for improving the model prediction accuracy.The sparrow search algorithm is used to optimize the hyperparameters of the above six regression models and correct the over-and underfitting problems of the single regression model to further improve the prediction accuracy.The mean square error(MSE)of the predicted and true values and the fitting of the data are compared and analyzed.The MSE of the stacking-SSAOP model was found to be smaller than that of the single regression model(MSE=0.03917).Therefore,the former has a higher prediction accuracy and better data fitting.This study innovatively applies the sparrow search algorithm to predict the slope safety factor,showcasing its advantages over traditional methods.Additionally,our proposed stacking-SSAOP model integrates multiple regression algorithms to enhance prediction accuracy.This model not only refines the prediction accuracy of the slope safety factor but also offers a fresh approach to handling the intricate soil composition and other influencing factors,making it a precise and reliable method for slope stability evaluation.This research holds importance for the modernization and digitalization of slope safety assessments. 展开更多
关键词 Multi-layer regression algorithm fusion Stacking gensemblelearning Sparrow search algorithm Slope safety factor Data prediction
原文传递
Exploring on Hierarchical Kalman Filtering Fusion Accuracy
9
作者 罗森林 张鹤飞 潘丽敏 《Journal of Beijing Institute of Technology》 EI CAS 1998年第4期373-379,共7页
Aim To analyze the traditional hierarchical Kalman filtering fusion algorithm theoretically and point out that the traditional Kalman filtering fusion algorithm is complex and can not improve the tracking precision we... Aim To analyze the traditional hierarchical Kalman filtering fusion algorithm theoretically and point out that the traditional Kalman filtering fusion algorithm is complex and can not improve the tracking precision well, even it is impractical, and to propose the weighting average fusion algorithm. Methods The theoretical analysis and Monte Carlo simulation methods were ed to compare the traditional fusion algorithm with the new one,and the comparison of the root mean square error statistics values of the two algorithms was made. Results The hierarchical fusion algorithm is not better than the weighting average fusion and feedback weighting average algorithm The weighting filtering fusion algorithm is simple in principle, less in data, faster in processing and better in tolerance.Conclusion The weighting hierarchical fusion algorithm is suitable for the defective sensors.The feedback of the fusion result to the single sersor can enhance the single sensorr's precision. especially once one sensor has great deviation and low accuracy or has some deviation of sample period and is asynchronous to other sensors. 展开更多
关键词 Kalman filtering hierarchical fusion algorithm weighting average feedback fusion algorithm
在线阅读 下载PDF
用于小型无人船的轻量级水面3D目标检测方法
10
作者 张凯 余道洋 +1 位作者 胡敏 赵君亮 《哈尔滨工程大学学报》 北大核心 2026年第1期216-227,共12页
针对小型无人船嵌入式平台部署高精度3D目标检测模型存在计算资源受限问题,本文提出一种基于传感器融合的轻量级水面3D目标检测方法。针对相机图像数据,构建轻量级水面目标检测模型YOLO-LW。该模型在骨干网络中设计轻量级GCF结构并嵌入S... 针对小型无人船嵌入式平台部署高精度3D目标检测模型存在计算资源受限问题,本文提出一种基于传感器融合的轻量级水面3D目标检测方法。针对相机图像数据,构建轻量级水面目标检测模型YOLO-LW。该模型在骨干网络中设计轻量级GCF结构并嵌入SimAM注意力机制以增强特征提取能力;在颈部网络采用DySample动态上采样模块;增加一个小尺寸检测头以提高水面小目标检测精度;并设计融合归一化Wasserstein距离和动态聚焦机制的损失函数N-WIoU,进一步优化模型性能。针对激光雷达点云数据,通过改进基于密度的噪声应用空间聚类算法,设计了根据距离和高度自适应调整参数机制,并根据点云反射率自动调整水面目标聚类簇,精准获取目标的3D坐标。将相机提取的2D目标位置信息与点云聚类获得的3D坐标进行深度融合,实现水面目标类别、3D位置和距离的实时检测。综合实验结果表明,该方法在保证检测精度的同时满足小型无人船嵌入式平台的实时性要求。 展开更多
关键词 无人船 水面目标 3D目标检测 传感器融合 深度学习 聚类算法
在线阅读 下载PDF
Knowledge Fusion Design Method:Satellite Module Layout 被引量:8
11
作者 王奕首 滕弘飞 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第1期32-42,共11页
As a complex engineering problem,the satellite module layout design (SMLD) is difficult to resolve by using conventional computation-based approaches. The challenges stem from three aspects:computational complexity,en... As a complex engineering problem,the satellite module layout design (SMLD) is difficult to resolve by using conventional computation-based approaches. The challenges stem from three aspects:computational complexity,engineering complexity,and engineering practicability. Engineers often finish successful satellite designs by way of their plenty of experience and wisdom,lessons learnt from the past practices,as well as the assistance of the advanced computational techniques. Enlightened by the ripe patterns,th... 展开更多
关键词 complex engineering system satellite module layout design knowledge fusion human-computer cooperation evolutionary algorithms prior knowledge human intelligence
原文传递
基于Fusion器件的数字音频处理系统
12
作者 李淑君 许爽 +1 位作者 孙冬 杨立 《郑州轻工业学院学报(自然科学版)》 CAS 2009年第1期104-106,124,共4页
设计了一种基于Fusion器件的数字音频处理系统,并通过对FPGA编程,实现了基于△Σ算法的PWM变换电路.该设计方案具有很强的灵活性和可靠性,在一定程度上降低了噪声信号,提高了电源的使用效率.
关键词 fusion 数字音频处理系统 FPGA △Σ算法
在线阅读 下载PDF
数智时代的态势分析与决策支持方法
13
作者 靳薇 张志恒 《计算机应用文摘》 2026年第1期235-237,共3页
在数智时代背景下,传统态势分析方法面临多源异构数据融合困难与实时性不足等挑战,亟需构建智能化决策支持体系。为实现对多维态势特征的精准提取与量化评估,文章通过融合大数据处理、机器学习算法及实时计算架构,构建了态势驱动的智能... 在数智时代背景下,传统态势分析方法面临多源异构数据融合困难与实时性不足等挑战,亟需构建智能化决策支持体系。为实现对多维态势特征的精准提取与量化评估,文章通过融合大数据处理、机器学习算法及实时计算架构,构建了态势驱动的智能化决策支持方法,同时引入自适应权重调整机制,有效增强了系统在复杂环境中的决策响应能力。实验验证表明,相较于传统方法,该方法在决策准确率上具有明显提升,为数智时代的态势感知与智能决策提供了可行的技术路径。 展开更多
关键词 数智时代 态势分析 决策支持系统 多源数据融合 智能算法
在线阅读 下载PDF
基于跨尺度特征融合的内窥镜图像增强算法
14
作者 刘旭阳 蔡芸 蒋林 《现代电子技术》 北大核心 2026年第1期34-40,共7页
临床医学的内窥镜图像由于在成像过程中存在补充光源不均匀和人体组织粘液反光的问题,出现大量曝光过度等图像质量较低的现象。现有基于深度学习的图像增强算法由于仅采用固定尺寸的特征融合方式,导致特征提取能力较低、增强效果较差。... 临床医学的内窥镜图像由于在成像过程中存在补充光源不均匀和人体组织粘液反光的问题,出现大量曝光过度等图像质量较低的现象。现有基于深度学习的图像增强算法由于仅采用固定尺寸的特征融合方式,导致特征提取能力较低、增强效果较差。为改善这一问题,文中构建了基于跨尺度特征融合的内窥镜图像增强算法,通过构建CM卷积模块实现高性能特征提取,同时采用SPPF金字塔池化模块实现对特征图不同尺度的池化操作,并且在网络不同尺度的网络层之间引入跨尺度特征融合(CFF)模块,实现多尺度特征融合和上下文信息传播,从而大幅提高图像细节捕捉能力和图像质量。实验结果表明,文中算法在PSNR、SSIM指标均高于现有算法,其中PSNR指标提高了9.9%,SSIM指标提高了15.4%,可以实现高质量内窥镜图像增强任务。 展开更多
关键词 内窥镜图像 深度特征融合 CFF 曝光异常 图像增强算法 金字塔池化模块
在线阅读 下载PDF
WSNS中基于Fusion-Bayes的离群点检测
15
作者 徐苏娅 胡彩平 王立松 《电子科技》 2013年第5期102-105,共4页
随着无线传感器网络技术的发展,数据采集量越来越大,维数也不断提高。然而现有的离群点检测算法多是面向单维或低维度数据,对此文中提出了基于Fusion-Bayes的离群点检测算法。该检测方法首先利用数据转换技术将不同数据属性转换成统一格... 随着无线传感器网络技术的发展,数据采集量越来越大,维数也不断提高。然而现有的离群点检测算法多是面向单维或低维度数据,对此文中提出了基于Fusion-Bayes的离群点检测算法。该检测方法首先利用数据转换技术将不同数据属性转换成统一格式,使得各属性可以进行融合运算;然后再利用贝叶斯方法对融合后的属性进行离群点检测。通过实验得出,多维数据属性融合后的检测结果相比于单维属性或低维属性的检测更加准确、效果更好。 展开更多
关键词 无线传感器 离群点检测 数据融合 贝叶斯算法
在线阅读 下载PDF
A new PQ disturbances identification method based on combining neural network with least square weighted fusion algorithm
16
作者 LV Gan-yun CHENG Hao-zhong +1 位作者 ZHA Hai-bao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第6期649-653,共5页
A new method for power quality(PQ)disturbances identification is brought forward based on combining a neural network with least square(LS)weighted fusion algorithm.The characteristic components of PQ disturbances are ... A new method for power quality(PQ)disturbances identification is brought forward based on combining a neural network with least square(LS)weighted fusion algorithm.The characteristic components of PQ disturbances are distilled through an improved phase-located loop(PLL)system at first,and then five child BP ANNs with different structures are trained and adopted to identify the PQ disturbances respectively.The combining neural network fuses the identification results of these child ANNs with LS weighted fusion algorithm,and identifies PQ disturbances with the fused result finally.Compared with a single neural network,the combining one with LS weighted fusion algorithm can identify the PQ disturbances correctly when noise is strong.However,a single neural network may fail in this case.Furthermore,the combining neural network is more reliable than a single neural network.The simulation results prove the conclusions above. 展开更多
关键词 PQ disturbances identification combining neural network LS weighted fusion algorithm improved PLL system
在线阅读 下载PDF
Anti-swarm UAV radar system based on detection data fusion
17
作者 WANG Pengfei HU Jinfeng +2 位作者 HU Wen WANG Weiguang DONG Hao 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1167-1176,共10页
There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti... There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti-UAV radar system based on multiple input multiple output(MIMO)is put forward,which can elevate the performance of resolution,angle accuracy,high data rate,and tracking flexibility for swarm UAV detection.Target resolution and detection are the core problem in detecting the swarm UAV.The distinct advantage of MIMO system in angular accuracy measurement is demonstrated by comparing MIMO radar with phased array radar.Since MIMO radar has better performance in resolution,swarm UAV detection still has difficulty in target detection.This paper proposes a multi-mode data fusion algorithm based on deep neural networks to improve the detection effect.Subsequently,signal processing and data processing based on the detection fusion algorithm above are designed,forming a high resolution detection loop.Several simulations are designed to illustrate the feasibility of the designed system and the proposed algorithm. 展开更多
关键词 SWARM RADAR high resolution deep neural network fusion algorithm
在线阅读 下载PDF
一种基于机器学习的井间水驱优势通道识别方法 被引量:3
18
作者 杨二龙 陈柄君 +2 位作者 董驰 曾傲 张梓彤 《钻采工艺》 北大核心 2025年第1期157-164,共8页
井间优势渗流通道的形成受多方面的因素综合影响,识别过程中需要分析的因素众多、过程复杂,最直观可靠的做法是通过剖面测试数据结合生产动态分析来判定,或者通过措施见效井来验证是否存在优势渗流通道,但是实际生产中剖面测试数据量不... 井间优势渗流通道的形成受多方面的因素综合影响,识别过程中需要分析的因素众多、过程复杂,最直观可靠的做法是通过剖面测试数据结合生产动态分析来判定,或者通过措施见效井来验证是否存在优势渗流通道,但是实际生产中剖面测试数据量不足,措施见效井分析结果又属于后验知识,时效性差,导致识别的精度和效率较低。因此,本文以大庆油田特高含水典型区块M区块为例,结合主控因素分析方法构建特征参数集,应用粒子群算法(PSO)优化深度置信神经网络(DBN)的结构参数,通过逐层递推和全局优化融合、有监督和无监督学习算法融合提升模型性能,形成了一种基于机器学习算法的注采井间优势通道识别的方法。构建的优势通道识别PSO-DBN模型应用于典型区块,识别准确率比未经过优化的DBN神经网络模型预测准确率提高了2.8%,比MLP神经网络模型预测准确率提高了8.6%,通过增补无标注样本、实现有监督和无监督学习算法融合,可以进一步提升识别精度。 展开更多
关键词 特高含水油藏 井间优势通道 深度置信神经网络 算法融合 机器学习
在线阅读 下载PDF
Track Association for Dynamic Target Tracking System Based on AP Algorithm
19
作者 储岳中 徐波 高有涛 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第6期643-651,共9页
Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system.... Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system.A multi-sensor data association is proposed based on aftinity propagation(AP)algorithm.The proposed method needs an initial similarity,a distance between any two points,as a parameter,therefore,the similarity matrix is calculated by track position,velocity and azimuth of track data.The approach can automatically obtain the optimal classification of uncertain target based on clustering validity index.Furthermore,the same kind of data are fused based on the variance of measured data and the fusion result can be taken as a new measured data of the target.Finally,the measured data are classified to a certain target based on the nearest neighbor ideas and its characteristics,then filtering and target tracking are conducted.The experimental results show that the proposed method can effectively achieve multi-sensor and multi-target track association. 展开更多
关键词 affinity propagation algorithm data fusion target tracking track association
在线阅读 下载PDF
矿井供电系统单相接地故障选线方法现状与发展趋势 被引量:4
20
作者 杨战社 张程 荣相 《煤矿安全》 北大核心 2025年第1期212-219,共8页
矿井供电系统常采用中性点不接地方式或经消弧线圈接地方式,由于井下环境的特殊性和复杂性,其单相接地故障选线问题一直没有得到很好的解决。分析并比较了2种接地方式的优缺点和系统发生单相接地故障时的选线难点。介绍了矿井供电系统... 矿井供电系统常采用中性点不接地方式或经消弧线圈接地方式,由于井下环境的特殊性和复杂性,其单相接地故障选线问题一直没有得到很好的解决。分析并比较了2种接地方式的优缺点和系统发生单相接地故障时的选线难点。介绍了矿井供电系统发生单相接地故障时的主动式选线法、被动式选线法(包括基于稳态信息选线法和基于暂态信息选线法)以及智能算法融合选线:主动式选线法主要通过检测注入信号判断故障线路;被动式选线法则基于故障发生后的稳态信息量和暂态信息量完成选线;智能算法融合选线能充分利用故障特征,发展前景广阔。针对目前故障选线方法未进行扰动识别、单一故障选线方法可靠性差、智能算法融合选线优势明显但未能得到很好应用等问题,提出了矿井供电系统故障选线方法的发展趋势。 展开更多
关键词 矿井供电系统 单相接地故障 主动式选线法 被动式选线法 智能算法融合选线
在线阅读 下载PDF
上一页 1 2 161 下一页 到第
使用帮助 返回顶部