针对3种典型的基于深度相机的同步定位与地图构建(SLAM)算法,包括RGB-D SLAM V2,RTAB-Map和DVO SLAM,介绍这3种SLAM算法的理论特点。采用两个公开的SLAM数据集,包括TUM数据集和ICL-NUIM数据集,进行SLAM算法的评测,评测指标包括SLAM算法...针对3种典型的基于深度相机的同步定位与地图构建(SLAM)算法,包括RGB-D SLAM V2,RTAB-Map和DVO SLAM,介绍这3种SLAM算法的理论特点。采用两个公开的SLAM数据集,包括TUM数据集和ICL-NUIM数据集,进行SLAM算法的评测,评测指标包括SLAM算法的精确度、运行性能以及鲁棒性。评测的实验结果表明,在选择基于深度相机的SLAM算法时:如果考虑精确度和鲁棒性优先于运行性能,则选择RGB-D SLAM V2;如果考虑运行性能和鲁棒性优先于精确度,则选择DVO SLAM;如果考虑精确度和运行性能优先于鲁棒性,则选择RTAB-Map。展开更多
针对移动机器人视觉导航定位需求,提出一种基于双目相机的视觉里程计改进方案。对于特征信息冗余问题,改进ORB(oriented FAST and rotated BRIEF)算法,引入多阈值FAST图像分割思想,为使误匹配尽可能减少,主要运用快速最近邻和随机采样...针对移动机器人视觉导航定位需求,提出一种基于双目相机的视觉里程计改进方案。对于特征信息冗余问题,改进ORB(oriented FAST and rotated BRIEF)算法,引入多阈值FAST图像分割思想,为使误匹配尽可能减少,主要运用快速最近邻和随机采样一致性算法;一般而言,运用的算法主要是立体匹配算法,此算法的特征主要指灰度,对此算法做出改进,运用一种新型的双目视差算法,此算法主要以描述子为特征,据此恢复特征点深度;为使所得位姿坐标具有相对较高的准确度,构造一种特定的最小二乘问题,使其提供初值,以相应的特征点三维坐标为基础,基于有效方式对相机运动进行估计。根据数据集的实验结果可知,所提双目视觉里程具有相对而言较好的精度及较高的实时性。展开更多
基于微软Kinect传感器,提出一种改进SURF(speeded up robust features)特征提取算法的单目视觉里程计新方法。用Kinect传感器获得环境彩色和深度图像,再采用基于特征点信息的改进的SURF算法完成彩色图像特征点的提取与匹配,提高匹配的...基于微软Kinect传感器,提出一种改进SURF(speeded up robust features)特征提取算法的单目视觉里程计新方法。用Kinect传感器获得环境彩色和深度图像,再采用基于特征点信息的改进的SURF算法完成彩色图像特征点的提取与匹配,提高匹配的正确率和鲁棒性,随后进行与深度图像的映射,实现三维重建并利用最小平方中值定理估计出机器人的路径信息。实验证明,该方法匹配正确率较SURF算法更高,在动态环境下具有很好的鲁棒性,是一种简单、有效的单目视觉里程计新方法。展开更多
文摘针对3种典型的基于深度相机的同步定位与地图构建(SLAM)算法,包括RGB-D SLAM V2,RTAB-Map和DVO SLAM,介绍这3种SLAM算法的理论特点。采用两个公开的SLAM数据集,包括TUM数据集和ICL-NUIM数据集,进行SLAM算法的评测,评测指标包括SLAM算法的精确度、运行性能以及鲁棒性。评测的实验结果表明,在选择基于深度相机的SLAM算法时:如果考虑精确度和鲁棒性优先于运行性能,则选择RGB-D SLAM V2;如果考虑运行性能和鲁棒性优先于精确度,则选择DVO SLAM;如果考虑精确度和运行性能优先于鲁棒性,则选择RTAB-Map。
文摘针对移动机器人视觉导航定位需求,提出一种基于双目相机的视觉里程计改进方案。对于特征信息冗余问题,改进ORB(oriented FAST and rotated BRIEF)算法,引入多阈值FAST图像分割思想,为使误匹配尽可能减少,主要运用快速最近邻和随机采样一致性算法;一般而言,运用的算法主要是立体匹配算法,此算法的特征主要指灰度,对此算法做出改进,运用一种新型的双目视差算法,此算法主要以描述子为特征,据此恢复特征点深度;为使所得位姿坐标具有相对较高的准确度,构造一种特定的最小二乘问题,使其提供初值,以相应的特征点三维坐标为基础,基于有效方式对相机运动进行估计。根据数据集的实验结果可知,所提双目视觉里程具有相对而言较好的精度及较高的实时性。
文摘基于微软Kinect传感器,提出一种改进SURF(speeded up robust features)特征提取算法的单目视觉里程计新方法。用Kinect传感器获得环境彩色和深度图像,再采用基于特征点信息的改进的SURF算法完成彩色图像特征点的提取与匹配,提高匹配的正确率和鲁棒性,随后进行与深度图像的映射,实现三维重建并利用最小平方中值定理估计出机器人的路径信息。实验证明,该方法匹配正确率较SURF算法更高,在动态环境下具有很好的鲁棒性,是一种简单、有效的单目视觉里程计新方法。