A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta met...A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta methods, especially, for Radau Ⅰ A, Radau Ⅱ A and Gaussian Runge-Kutta methods.展开更多
In this paper, we mainly consider weighted sensitivity minimization by a stable controller for linear time-invariant and time-varying systems. The problem is reduced to a distance problem from an operator to the nest ...In this paper, we mainly consider weighted sensitivity minimization by a stable controller for linear time-invariant and time-varying systems. The problem is reduced to a distance problem from an operator to the nest algebra. And we give the existence and its computation of an optimal stable controller for the distance problem.展开更多
It is well known that mono-implicit Runge-Kutta methods have been applied in the efficient numerical solution of initial or boundary value problems of ordinary differential equations. Burrage (1994) has shown that the...It is well known that mono-implicit Runge-Kutta methods have been applied in the efficient numerical solution of initial or boundary value problems of ordinary differential equations. Burrage (1994) has shown that the order of an s-stage monoimplicit Runge-Kutta method is at most s+1 and the stage order is at most 3. In this paper, it is shown that the order of an s-stage mono-implicit Runge-Kutta method being algebraically stable is at most min((s) over tilde, 4), and the stage order together with the optimal B-convergence order is at most min(s, 2), where [GRAPHICS]展开更多
The main purpose of the present paper is to examine the existence and local uniqueness of solutions of the implicit equations arising in the application of a weakly algebraically stable general linear methods to dissi...The main purpose of the present paper is to examine the existence and local uniqueness of solutions of the implicit equations arising in the application of a weakly algebraically stable general linear methods to dissipative dynamical systems, and to extend the existing relevant results of Runge-Kutta methods by Humphries and Stuart(1994). [ABSTRACT FROM AUTHOR]展开更多
文摘A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta methods, especially, for Radau Ⅰ A, Radau Ⅱ A and Gaussian Runge-Kutta methods.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1127105911201438)
文摘In this paper, we mainly consider weighted sensitivity minimization by a stable controller for linear time-invariant and time-varying systems. The problem is reduced to a distance problem from an operator to the nest algebra. And we give the existence and its computation of an optimal stable controller for the distance problem.
文摘It is well known that mono-implicit Runge-Kutta methods have been applied in the efficient numerical solution of initial or boundary value problems of ordinary differential equations. Burrage (1994) has shown that the order of an s-stage monoimplicit Runge-Kutta method is at most s+1 and the stage order is at most 3. In this paper, it is shown that the order of an s-stage mono-implicit Runge-Kutta method being algebraically stable is at most min((s) over tilde, 4), and the stage order together with the optimal B-convergence order is at most min(s, 2), where [GRAPHICS]
基金a grant !(No. 19871070) from NSF of China a grant!(No. A757D9I0) from Academy of Mathematics and System Sciences, Academy o
文摘The main purpose of the present paper is to examine the existence and local uniqueness of solutions of the implicit equations arising in the application of a weakly algebraically stable general linear methods to dissipative dynamical systems, and to extend the existing relevant results of Runge-Kutta methods by Humphries and Stuart(1994). [ABSTRACT FROM AUTHOR]