期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Integral Points on a Class of Elliptic Curve 被引量:3
1
作者 ZHU Huilin CHEN Jianhua 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第3期477-480,共4页
We prove all integral points of the elliptic curve y^2=x^2-30x+133 are (x,y) = (-7,0),(-3,±14),(2, ±9),(6,±13), (5143326,±11664498677), by using the method of algebraic number theory a... We prove all integral points of the elliptic curve y^2=x^2-30x+133 are (x,y) = (-7,0),(-3,±14),(2, ±9),(6,±13), (5143326,±11664498677), by using the method of algebraic number theory and p-adic analysis. Furthermore, we develop a computation method to find all integral points on a class of elliptic curve y^2= (x+α)(x^2-α)(x^2-αx+b) ,α ,b∈Z,α^2〈4b and find all integer solutions of hyperelliptic Diophantine equation Dy^2=Ax^4 + Bx^2 +C,B^2〈4AC. 展开更多
关键词 Diophantine equation elliptic curve fundamental unit algebraic number factorization p-adic analysis method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部