期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
Active sites contribution from nanostructured interface of palladium and cerium oxide with enhanced catalytic performance for alcohols oxidation in alkaline solution 被引量:1
1
作者 Fulong Wang Huaguang Yu +2 位作者 Zhiqun Tian Huaiguo Xue Ligang Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期395-403,共9页
Nanostructured interface is significant for the electrocatalysis process. Here we comparatively studied the electrooxidation of alcohols catalyzed by nanostructured palladium or palladium-cerium oxide. Two kinds of ac... Nanostructured interface is significant for the electrocatalysis process. Here we comparatively studied the electrooxidation of alcohols catalyzed by nanostructured palladium or palladium-cerium oxide. Two kinds of active sites were observed in palladium-cerium oxide system, attributing to the co-action of Pd-cerium oxide interface and Pd sites alone, by CO stripping technique, a structure-sensitive process generally employed to probe the active sites. Active sites resulting from the nanostructured interfacial contact of Pd and cerium oxide were confirmed by high resolution transmission electron microscopy and electrochemical CO stripping approaches. Electrochemical measurements of cyclic voltammetry and chronometry results demonstrated that Pd-cerium oxide catalysts exhibited much higher catalytic performances for alcohols oxidation than Pd alone in terms of activity, stability and anti-poisoning ability.The improved performance was probably attributed to the nanostructured active interface in which the catalytic ability from each component can be maximized through the synergistic action of bi-functional mechanism and electronic effect. The calculated catalytic efficiency of such active sites was many times higher than that of the Pd active sites alone. The present work showed the significance of valid nanostructured interface design and fabrication in the advanced catalysis system. 展开更多
关键词 alcohols oxidation Fuel cells Pd catalysts ELECTROoxidation CO stripping
在线阅读 下载PDF
Interfacial and Vacancies Engineering of Copper Nickel Sulfide for Enhanced Oxygen Reduction and Alcohols Oxidation Activity
2
作者 Zhaoyang Wang Xiaobin Liao +10 位作者 Min Zhou Fuzhi Huang Kwadwo Asare Owusu Jiantao Li Zifeng Lin Qi Sun Xufeng Hong Congli Sun Yibing Cheng Yan Zhao Liqiang Mai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期288-298,共11页
Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions(ORR,AOR)are extremely vital for the development of direct oxidation alkaline fuel... Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions(ORR,AOR)are extremely vital for the development of direct oxidation alkaline fuel cells,metal-air batteries,and water electrolysis system involving hydrogen and value-added organic products generation,but they remain a great challenge.Herein,a bifunctional electrocatalyst is prepared by anchoring CuS/NiS_(2)nanoparticles with abundant heterointerfaces and sulfur vacancies on graphene(Cu_(1)Ni_(2)-S/G)for ORR and AOR.Benefiting from the synergistic effects between strong interfacial coupling and regulation of the sulfur vacancies,Cu_(1)Ni_(2)-S/G achieves dramatically enhanced ORR activity with long term stability.Meanwhile,when ethanol is utilized as an oxidant for AOR,an ultralow potential(1.37 V)at a current density of 10 mA cm-2 is achieved,simultaneously delivering a high Faradaic efficiency of 96%for ethyl acetate production.Cu_(1)Ni_(2)-S/G also exhibits catalytic activity for other alcohols electrooxidation process,indicating its multifunctionality.This work not only highlights a viable strategy for tailoring catalytic activity through the synergetic combination of interfacial and vacancies engineering,but also opens up new avenues for the construction of a self-driven biomass electrocatalysis system for the generation of value-added organic products and hydrogen under ambient conditions. 展开更多
关键词 alcohols oxidation reaction HETEROINTERFACE metal sulfide oxygen reduction reaction sulfur vacancies
在线阅读 下载PDF
Saturated Alcohols Electrocatalytic Oxidations on Ni-Co Bimetal Oxide Featuring Balanced B-and L-Acidic Active Sites
3
作者 Junqing Ma Wenshu Luo +9 位作者 Xunlu Wang Xu Yu Jiacheng Jayden Wang Huashuai Hu Hanxiao Du Jianrong Zeng Wei Chen Minghui Yang Jiacheng Wang Xiangzhi Cui 《Nano-Micro Letters》 2026年第2期105-123,共19页
Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electro... Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electrocatalytic oxidations of saturated alcohols(C_(1)-C_(6))to selectively form formate using Ni Co hydroxide(Ni Co-OH)derived Ni Co_(2)O_(4)solid-acid electrocatalysts with balanced Lewis acid(LASs)and Brønsted acid sites(BASs).Thermal treatment transforms BASs-rich(89.6%)Ni Co-OH into Ni Co_(2)O_(4)with nearly equal distribution of LASs(53.1%)and BASs(46.9%)which synergistically promote adsorption and activation of OH-and alcohol molecules for enhanced oxidation activity.In contrast,BASs-enriched Ni Co-OH facilitates formation of higher valence metal sites,beneficial for water oxidation.The combined experimental studies and theoretical calculation imply the oxidation ability of C1-C6alcohols increases as increased number of hydroxyl groups and decreased HOMO-LUMO gaps:methanol(C_(1))<ethylene glycol(C_(2))<glycerol(C3)<meso-erythritol(C4)<xylitol(C5)<sorbitol(C6),while the formate selectivity shows the opposite trend from 100 to 80%.This study unveils synergistic roles of LASs and BASs,as well as hydroxyl group effect in electro-upgrading of alcohols using solid-acid electrocatalysts. 展开更多
关键词 Solid-acid electrocatalyst Alcohol oxidation reaction Bronsted acid sites Lewis acid sites C_(1)-C_(6)saturated alcohols
在线阅读 下载PDF
Novel cobalt(Ⅱ) complexes of amino acids-Schiff bases catalyzed aerobic oxidation of various alcohols to ketones and aldehyde 被引量:13
4
作者 Seyed Mohammad Seyedi Reza Sandaroos Gholam Hossein Zohuri 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第11期1303-1306,共4页
Two cobalt(Ⅱ) complexes 1 and 2 of Schiff bases derived from amino acids were synthesized and used for oxidation of benzyl alcohol with molecular oxygen at different conditions of pH,solvent,temperature and complex... Two cobalt(Ⅱ) complexes 1 and 2 of Schiff bases derived from amino acids were synthesized and used for oxidation of benzyl alcohol with molecular oxygen at different conditions of pH,solvent,temperature and complex/alcohol molar ratio to optimize reaction conditions and to evaluate the catalytic efficiency of new cobalt Schiff base complexes.Under obtained optimum conditions,various alcohols were oxidized to corresponding aldehydes and ketones. 展开更多
关键词 Cobalt(Ⅱ) complexes Alcohol oxidation Aerobic oxidation
在线阅读 下载PDF
Covalently integrated core-shell MOF@COF hybrids as efficient visible-light-driven photocatalysts for selective oxidation of alcohols 被引量:8
5
作者 Guilong Lu Xiubing Huang +3 位作者 Yang Li Guixia Zhao Guangsheng Pang Ge Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期8-15,共8页
Building a covalently connected structure with accelerated photo-induced electrons and charge-carrier separation between semiconductors could enhance the photocatalytic performance.In this work,we report a facile and ... Building a covalently connected structure with accelerated photo-induced electrons and charge-carrier separation between semiconductors could enhance the photocatalytic performance.In this work,we report a facile and novel seed growth method to coat NH2-MIL-125 MOFs with crystalline and porous covalent organic frameworks(COFs)materials and form a range of NH2-MIL-125@TAPB-PDA nanocomposites with different thicknesses of COF shell.The introduction of appropriate content of COF could not only modify the intrinsic electronic and optical properties,but also enhance the photocatalytic activity distinctly.Especially,NH2-MIL-125@TAPB-PDA-3 with COF shell thickness of around 20nm exhibited the highest yield(94.7%)of benzaldehyde which is approximately 2.5 and 15.5 times as that of parental NH2-MIL-125 and COF,respectively.The promoted photocatalytic performance of hybrid materials was mainly owing to the enhanced photo-induced charge carriers transfer between the MOF and COF through the covalent bond.In addition,a possible mechanism to elucidate the process of photocatalysis was explored.Therefore,this kind of MOF-based photocatalysts possesses great potentials in future green organic synthesis. 展开更多
关键词 Metal organic frameworks Covalent organic frameworks Core-shell structure PHOTOCATALYST Selective alcohol oxidation
在线阅读 下载PDF
A review on photo-, electro- and photoelectro- catalytic strategies for selective oxidation of alcohols 被引量:5
6
作者 Duoyue Tang Guilong Lu +6 位作者 Zewen Shen Yezi Hu Ling Yao Bingfeng Li Guixia Zhao Baoxiang Peng Xiubing Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期80-118,I0003,共40页
Traditional conversion of alcohols into carbonyl compounds exists a few drawbacks such as harsh reaction conditions,production of large amounts of hazardous wastes,and poor selectivity.The newly emerging conversion ap... Traditional conversion of alcohols into carbonyl compounds exists a few drawbacks such as harsh reaction conditions,production of large amounts of hazardous wastes,and poor selectivity.The newly emerging conversion approaches via photo-,electro-,and photoelectro-catalysis to oxidize alcohols into high value-added corresponding carbonyl compounds as well as the possible simultaneous production of clean fuel hydrogen(H_(2))under mild conditions are promising to substitute the traditional approach to form greener and sustainable reaction systems and thus have aroused tremendous investigations.In this review,the state-of-the-art photocatalytic,electrocatalytic,and photoelectrocatalytic strategies for selective oxidation of different types of alcohols(aromatic and aliphatic alcohols,single alcohol,and polyols,etc.)as well as the simultaneous production of H_(2) in certain systems are discussed.The design of photocatalysts,electrocatalysts,and photoelectrocatalysts as well as reaction mechanism is summarized and discussed in detail.In the end,current challenges and future research directions are proposed.It is expected that this review will not only deepen the understanding of environmentally friendly catalytic systems for alcohol conversion as well as H_(2) production,but also enlighten significance and inspirations for the follow-up study of selective oxidation of various types of organic molecules to value-added chemicals. 展开更多
关键词 Alcohol oxidation Carbonyl compounds PHOTOCATALYSIS ELECTROCATALYSIS PHOTOELECTROCATALYSIS
在线阅读 下载PDF
Highly Efficient,Green Oxidation of Alcohols Using Novel Heterogeneous Ruthenium Catalyst 被引量:4
7
作者 Hong Bing JI Yu QIAN 《Chinese Chemical Letters》 SCIE CAS CSCD 2003年第6期615-618,共4页
MnFe1.4Ru0.45Cu0.15O4 was an effective heterogeneous catalyst for the oxidation of various types of alcohols to the corresponding carbonyl compounds using atmospheric pressure of oxygen under mild conditions. Further... MnFe1.4Ru0.45Cu0.15O4 was an effective heterogeneous catalyst for the oxidation of various types of alcohols to the corresponding carbonyl compounds using atmospheric pressure of oxygen under mild conditions. Furthermore, this catalyst was also effective towards alcohol oxidation using water as solvent instead of toluene. 展开更多
关键词 Alcohol oxidation RUTHENIUM heterogeneous reaction surfactant.
在线阅读 下载PDF
Promoting electrocatalytic alcohols oxidation coupled with H_(2) production via ligand intercalation strategy 被引量:2
8
作者 Li Li Zhiyuan Zhang +1 位作者 Haotong Chen Fei Chen 《Nano Research》 SCIE EI CSCD 2023年第4期4596-4602,共7页
Electrochemical alcohol oxidation,the alternate of oxygen evolution reaction,has been recognized as an effective way to produce value-added chemicals coupled with H2 production.However,the current researches still suf... Electrochemical alcohol oxidation,the alternate of oxygen evolution reaction,has been recognized as an effective way to produce value-added chemicals coupled with H2 production.However,the current researches still suffer from the low reaction rate and Faradaic efficiency(FE)that limits the overall efficiency.Herein,we report a ligand intercalation strategy to enhance the current density of alcohol electrooxidation by intercalating sodium dodecyl sulfonate(SDS)in the interlayer of Co(OH)_(2)catalyst(Co(OH)_(2)-SDS).For instance,the Co(OH)_(2)-SDS shows obviously enhanced current density for glycerol electrooxidation than that of pure Co(OH)_(2).The corresponding glycerol conversion rate and H2 production rate reach 0.35 mmol·cm^(−2)·h^(−1)and 9.1 mL·cm^(−2)·h^(−1)at 1.42 V vs.reversible hydrogen electrode,which are 2.2-and 1.9-fold higher than that of Co(OH)_(2).The yield of formate reaches 86.6%with selectivity of 95.3%at high glycerol conversion of 95.1%(with FE of 83.3%for glycerol oxidation).The Co(OH)_(2)-SDS is demonstrated efficient for different alcohols with enhanced performance.We confirmed that the intercalation of SDS in Co(OH)_(2)can promote the generation and exposure of CoOOH reactive sites,and also facilitate the adsorption of alcohol,thus enabling high reaction rate. 展开更多
关键词 ELECTROCATALYSIS alcohol oxidation hydrogen cobalt hydroxide ligand intercalation
原文传递
Covalent organic framework stabilized CdS nanoparticles as efficient visible-light-driven photocatalysts for selective oxidation of aromatic alcohols 被引量:2
9
作者 Kaiyue Zhang Guilong Lu +3 位作者 Zuoshuai Xi Yaqiong Li Qingjie Luan Xiubing Huang 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第7期2207-2211,共5页
Noble-metal-free photocatalysts with high and stable performance provide an environmentally-friendly and cost-efficient route for green organic synthesis.In this work,CdS nanoparticles with small particle size and dif... Noble-metal-free photocatalysts with high and stable performance provide an environmentally-friendly and cost-efficient route for green organic synthesis.In this work,CdS nanoparticles with small particle size and different amount were successfully deposited on the surface of covalent organic frameworks(COFs).The deposition of suitable content of CdS on COFs could not only modify the light adsorption ability and the intrinsic electronic properties,but also enhance the photocatalytic activity and cycling performance of CdS for the selective oxidation of aromatic alcohols under visible light.Especially,COF/CdS-3 exhibited the highest yield(97.1%)of benzalde hyde which is approximately 2.5 and 15.9 times as that of parental CdS and COF,respectively.The results show that the combination of CdS and COF can improve the utilization of visible light and the separation of photo-generated charge carriers,and COF with theπ-conjugated system as supports for CdS nanoparticles could provide efficient electron transport channels and improve the photocatalytic performance.Therefore,this kind of COF-supported photocatalysts with accelerated photo-induced electrons and charge-carrier separation between semiconductors possesses great potentials in future green organic synthesis. 展开更多
关键词 Covalent organic frameworks CdS nanoparticles PHOTOCATALYST Selective alcohol oxidation Visible light Green organic synthesis
原文传递
State-of-the-art progress in the selective photo-oxidation of alcohols 被引量:1
10
作者 Zewen Shen Yezi Hu +6 位作者 Bingfeng Li Yingtong Zou Shaojun Li GWilma Busser Xiangke Wang Guixia Zhao Martin Muhler 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期338-350,I0007,共14页
Photocatalytic oxidation of alcohols has received more and more attention in recent years following the numerous studies on the degradation of pollutants, hydrogen evolution, and CO_(2) reduction by photocatalysis. In... Photocatalytic oxidation of alcohols has received more and more attention in recent years following the numerous studies on the degradation of pollutants, hydrogen evolution, and CO_(2) reduction by photocatalysis. Instead of the total oxidation of organics in the degradation process, the photo-oxidation of alcohols aims at the selective conversion of alcohols to produce carbonyl/acid compounds. Promising results have been achieved in designing the catalysts and reaction system, as well as in the mechanistic investigations in the past few years. This review summarizes the state-of-the-art progress in the photo-oxidation of alcohols, including the development of photocatalysts and cocatalysts, reaction conditions including the solvent and the atmosphere, and the exploration of mechanisms with scavengers experiment, electron paramagnetic resonance (EPR) and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The challenges and outlook for the further research in this field are also discussed. 展开更多
关键词 Alcohol oxidation PHOTOCATALYSIS Carbonyl compounds SELECTIVITY
在线阅读 下载PDF
Selective oxidation of alcohols with H2O2 catalyzed by zinc polyoxometalate immobilized on multi-wall carbon nanotubes modified with ionic liquid 被引量:3
11
作者 Robabeh Hajian Zahra Alghour 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第5期971-975,共5页
In this work,acid functionalized multi-wall carbon nanotubes(MWCNTs) were modified with imidazolium-based ionic liquids.The selective oxidation of various alcohols with hydrogen peroxide catalyzed by [PZnMo2W9O39]^5... In this work,acid functionalized multi-wall carbon nanotubes(MWCNTs) were modified with imidazolium-based ionic liquids.The selective oxidation of various alcohols with hydrogen peroxide catalyzed by [PZnMo2W9O39]^5-,ZnPOM,supported on ionic liquids-modified with MWCNTs,MWCNTAPIB,is reported.This catalyst[ZnPOM@APIB-MWCNT],was characterized by X-ray diffraction,scanning electron microscopy(SEM) and FT-IR spectroscopic methods.This heterogeneous catalyst exhibited high stability and reusability in the oxidation reaction without loss of its catalytic performance. 展开更多
关键词 Immobilized ionic liquid [PZnMo2W9O39]^5- Hydrogen peroxide oxidation Alcohol Heterogeneous catalyst
原文传递
Selective oxidation of benzyl alcohols to benzoic acid catalyzed by eco-friendly cobalt thioporphyrazine catalyst supported on silica-coated magnetic nanospheres 被引量:2
12
作者 Huan Li Lan Cao +3 位作者 Changjun Yang Zhehui Zhang Bingguang Zhang Kejian Deng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第10期84-90,共7页
A novel magnetically recoverable thioporphyrazine catalyst(CoPz(S-Bu)8/SiO2@Fe3O4) was prepared by immobilization of the cobalt octkis(butylthio) porphyrazine complex(CoPz(S-Bu)8) on silica-coated magnetic n... A novel magnetically recoverable thioporphyrazine catalyst(CoPz(S-Bu)8/SiO2@Fe3O4) was prepared by immobilization of the cobalt octkis(butylthio) porphyrazine complex(CoPz(S-Bu)8) on silica-coated magnetic nanospheres(SiO2@Fe3O4). The composite CoPz(S-Bu)8/SiO2@Fe3O4appeared to be an active catalyst in the oxidation of benzyl alcohol in aqueous solution using hydrogen peroxide(H2O2) as oxidant under Xe-lamp irradiation,with 36.4% conversion of benzyl alcohol, about 99% selectivity for benzoic acid and turnover number(TON) of 61.7 at ambient temperature. The biomimetic catalyst CoPz(S-Bu)8was supported on the magnetic carrier SiO2@Fe3O4 so as to suspend it in aqueous solution to react with substrates, utilizing its lipophilicity. Meanwhile the CoPz(S-Bu)8can use its unique advantages to control the selectivity of photocatalytic oxidation without the substrate being subjected to deep oxidation. The influence of various reaction parameters on the conversion rate of benzyl alcohol and selectivity of benzoic acid was investigated in detail. Moreover, photocatalytic oxidation of substituted benzyl alcohols was obtained with high conversion and excellent selectivity, specifically conversion close to 70%, selectivity close to 100% and TON of 113.6 for para-position electron-donating groups. The selectivity and eco-friendliness of the biomimetic photocatalyst give it great potential for practical applications. 展开更多
关键词 Cobalt thioporphyrazine Magnetic nanospheres Composite catalyst Photocatalytic oxidation Substituted benzyl alcohol Benzoic acid
原文传递
A novel and selective oxidation of benzylic alcohols with polymer-supported periodic acid under mild aprotic conditions 被引量:1
13
作者 Ali Reza Pourali Mehrosadat Tabaean S.Mohamad Reza Nazifi 《Chinese Chemical Letters》 SCIE CAS CSCD 2012年第1期21-24,共4页
A new polymeric oxidizing reagent was prepared by supporting periodic acid on poly(1,4-phenylene-2,5-pyridine dicarboxyamide). This polymeric reagent was used for the selective oxidation of primary benzylic alcohols... A new polymeric oxidizing reagent was prepared by supporting periodic acid on poly(1,4-phenylene-2,5-pyridine dicarboxyamide). This polymeric reagent was used for the selective oxidation of primary benzylic alcohols to the corresponding benzaldehydes in CH_3CN at reflux conditions.Excellent selectivity was observed between primary benzyl alcohols and secondary ones as well as non-benzylic alcohols in the oxidation reactions.Allylic alcohols were also converted to the corresponding aldehydes with good yields. 展开更多
关键词 oxidation Benzylic alcohol Polymer-supported reagent Periodate
原文传递
Aromatic alcohols oxidation and hydrogen evolution over π-electron conjugated porous carbon nitride rods
14
作者 Jiawei Xia Neeta Karjule +3 位作者 Gabriel Mark Michael Volokh Haiqun Chen Menny Shalom 《Nano Research》 SCIE EI CSCD 2022年第12期10148-10157,共10页
Photocatalysis using polymeric carbon nitride(CN)materials is a constantly evolving field,where the variation of synthetic procedures allows the constant improvement of activity by tackling the intrinsic limitations o... Photocatalysis using polymeric carbon nitride(CN)materials is a constantly evolving field,where the variation of synthetic procedures allows the constant improvement of activity by tackling the intrinsic limitations of these materials(optical absorbance,specific surface area,charge migration,etc.).Amongst the possible photocatalytic reactions,the most popular application of CNs is the hydrogen evolution reaction(HER)from water.In this work,we design precisely-controlled carbon-doped porous CN rods with extended π-electron conjugation from supramolecular assemblies of melem and co-monomers,which partially substitute nitrogen for carbon atoms at the pyrimidine ring of the melem.Dense hydrogen bonds and good thermal stability of the melem-based supramolecular framework allow synthesizing a more ordered structure for improved charge migration;the control from the molecular level over the position of carbon-substituted nitrogen positions tailors the band alignment and photogenerated charge separation.The optimal photocatalyst shows an excellent HER rate(up to 10.16 mmol·h-1·g-1 under 100 W white light-emitting diode(LED)irradiation,with an apparent quantum efficiency of 20.0%at 405 nm,which is 23.2 times higher compared to a reference bulk CN).To fully harness the benefits of the developed metal-free CNs,selective oxidation reaction of aromatic alcohols is demonstrated with high conversion and selectivity. 展开更多
关键词 supramolecular assembly π-electron conjugation carbon nitride photocatalytic hydrogen evolution reaction selective aromatic alcohol oxidation
原文传递
Highly efficient oxidation of alcohols using Oxone~ as oxidant catalyzed by ruthenium complex under mild reaction conditions
15
作者 Zi Qiang Lei Jian Qiang Wang Peng Hua Yan 《Chinese Chemical Letters》 SCIE CAS CSCD 2008年第9期1031-1034,共4页
Aromatic and alkyl alcohols were oxidized to the corresponding aldehydes or ketones at room temperature with high conversion and selectivity using Oxone (2KHSOs-KHSO4.K2SO4) as oxidant catalyzed by ruthenium complex... Aromatic and alkyl alcohols were oxidized to the corresponding aldehydes or ketones at room temperature with high conversion and selectivity using Oxone (2KHSOs-KHSO4.K2SO4) as oxidant catalyzed by ruthenium complex Quin-Ru-Quin (where Quin = 8-hydroxyquinoline). The reaction time is very short and the preparation of complex is simple. 展开更多
关键词 oxidation of alcohols OXONE Ruthenium complex
在线阅读 下载PDF
Boosting Alcohol Oxidation Electrocatalysis with Multifactorial Engineered Pd_(1)/Pt Single‑Atom Alloy‑BiO_(x)Adatoms Surface 被引量:1
16
作者 Yujia Liao Wen Chen +9 位作者 Yutian Ding Lei Xie Qi Yang Qilong Wu Xianglong Liu Jinliang Zhu Renfei Feng Xian‑Zhu Fu Shuiping Luo Jing‑Li Luo 《Nano-Micro Letters》 2025年第7期396-409,共14页
Engineering nanomaterials at single-atomic sites could enable unprecedented catalytic properties for broad applications,yet it remains challenging to do so on the surface of multimetallic nanocrystals.Herein,we presen... Engineering nanomaterials at single-atomic sites could enable unprecedented catalytic properties for broad applications,yet it remains challenging to do so on the surface of multimetallic nanocrystals.Herein,we present the multifactorial engineering(size,shape,phase,and composition)of the fully ordered PtBi nanoplates at atomic level,achieving a unique catalyst surface where the face-centered cubic(fcc)Pt edges are modified by the isolated Pd atoms and BiO_(x)adatoms.This Pd_(1)/Pt-BiO_(x)electrocatalyst exhibits an ultrahigh mass activity of 16.01 A mg^(-1)Pt+Pd toward ethanol oxidation in alkaline electrolyte and enables a direct ethanol fuel cell of peak power density of 56.7 mW cm^(−2).The surrounding BiO_(x)adatoms are critical for mitigating CO-poisoning on the Pt surface,and the Pd_(1)/Pt single-atom alloy further facilitates the electrooxidation of CH_(3)CH_(2)OH.This work offers new insights into the rational design and construction of sophisticated catalyst surface at single-atomic sites for highly efficient electrocatalysis. 展开更多
关键词 ELECTROCATALYSIS Alcohol oxidation Single-atom alloy INTERMETALLIC Fuel cell
在线阅读 下载PDF
Bimetallic Ni_(x)Fe_(2-x)P cocatalyst with tunable electronic structure for enhanced photocatalytic benzyl alcohol oxidation coupled with H_(2)evolution over red phosphorus 被引量:1
17
作者 Shuang Li Haili Lin +5 位作者 Xuemei Jia Xin Jin Qianlong Wang Xinyue Li Shifu Chen Jing Cao 《Chinese Journal of Catalysis》 2025年第3期363-377,共15页
Although bimetallic phosphide cocatalysts have attracted considerable interest in photocatalysis research owing to their advantageous thermodynamic characteristics,superstable and efficient cocatalysts have rarely bee... Although bimetallic phosphide cocatalysts have attracted considerable interest in photocatalysis research owing to their advantageous thermodynamic characteristics,superstable and efficient cocatalysts have rarely been produced through the modulation of their structure and composition.In this study,a series of bimetallic nickel-iron phosphide(Ni_(x)Fe_(2-x)P,where 0<x<2)cocatalysts with controllable structures and overpotentials were designed by adjusting the atomic ratio of Ni/Fe onto nonmetallic elemental red phosphorus(RP)for the photocatalytic selective oxidation of benzyl alcohol(BA)coupled with hydrogen production.The catalysts exhibited an outstanding photocatalytic activity for benzaldehyde and a high H_(2)yield.The RP regulated by bimetallic phosphide cocatalysts(Ni_(x)Fe_(2-x)P)demonstrated higher photocatalytic oxidation-reduction activity than that regulated by monometallic phosphide cocatalysts(Ni_(2)P and Fe2P).In particular,the RP regulated by Ni_(1.25)Fe_(0.75)P exhibited the best photocatalytic performance.In addition,experimental and theoretical calculations further illustrated that Ni_(1.25)Fe_(0.75)P,with the optimized electronic structure,possessed good electrical conductivity and provided strong adsorption and abundant active sites,thereby accelerating electron migration and lowering the reaction energy barrier of RP.This finding offers valuable insights into the rational design of highly effective cocatalysts aimed at optimizing the photocatalytic activity of composite photocatalysts. 展开更多
关键词 Bimetallic phosphides cocatalyst Composition regulation Red phosphorus Selective oxidation of benzyl alcohol H_(2)
在线阅读 下载PDF
MOF@MOF hierarchical heterotructures for enhanced photocatalytic H_(2)O_(2) production and furfuryl alcohol oxidation
18
作者 Hai-Bo Huang Fang-Long Sun +4 位作者 Ze Luo Meng-Yu Sun Ben-Hao Liu Xu-Sheng Wang Hua Tang 《Chinese Journal of Structural Chemistry》 2025年第11期53-60,共8页
By integrating photocatalytic H_(2)O_(2) production with furfuryl alcohol(FAL)oxidation,this coupled process establishes an atom-economical pathway for sustainable chemical synthesis,simultaneously achieving energy st... By integrating photocatalytic H_(2)O_(2) production with furfuryl alcohol(FAL)oxidation,this coupled process establishes an atom-economical pathway for sustainable chemical synthesis,simultaneously achieving energy storage and biomass valorization.This study introduces a meticulously engineered MOF@MOF hierarchical photocatalytic architecture,specifically the PCN-134@MOF-525(PM-X series)composite,designed for synergistic catalysis of these processes.By strategically integrating two distinct MOF materials,we circumvent the limitations of single-component systems,such as facile charge carrier recombination,and establish a redox dualactive site catalytic system.This rational design transcends simple additivity,yielding emergent catalytic behaviors driven by precise control over interfacial electric fields and dynamic structural modulation.The resultant hierarchical organization enhances light harvesting,promotes efficient charge separation,and accelerates charge transfer kinetics.Mechanistic insights,derived from photoelectrochemical,spectroscopic,and in-situ IR analyses,reveal a synergistic interplay that suppresses electron-hole recombination and spatially segregates redox processes.PM-3 demonstrates a significant enhancement in catalytic efficiency(the highest value reported),exhibiting a 4.5-fold increase in both H_(2)O_(2) production and FAL oxidation rates compared to the individual MOF components,achieving near-quantitative FAL conversion and exceptional selectivity.This work provides a potent design blueprint,emphasizing interfacial engineering and structural synergy for unprecedented efficiency and selectivity in sustainable chemical transformations. 展开更多
关键词 MOF@MOF Hierarchical structure PHOTOCATALYTIC Hydrogen peroxide Furfuryl alcohol oxidation
原文传递
Submonolayered Ru-modified Pd mesoporous nanosheets as multifunctional electrocatalyst for hydrogen evolution and alcohol oxidation reactions
19
作者 Xinran Jiao Chaoqun Ma +7 位作者 Biao Huang Dengke Zhao Fukai Feng Sumei Han Nailiang Yang Qipeng Lu Yiyao Ge Qian Xu 《Advanced Powder Materials》 2025年第5期49-59,共11页
The structural modulation of metal-based heterostructure plays a vital role in achieving enhanced performances for highly efficient electrocatalysis.Here we design submonolayered Ru-modified Pd mesoporous nanosheets(P... The structural modulation of metal-based heterostructure plays a vital role in achieving enhanced performances for highly efficient electrocatalysis.Here we design submonolayered Ru-modified Pd mesoporous nanosheets(Pd-Ru MNSs)with the exposure of both Pd and Ru active sites as well as the high atomic utilization of two-dimensional structure.The obtained Pd-Ru MNSs can act as a highly efficient multifunctional catalyst for hydrogen evolution reaction(HER)and alcohol oxidation reactions including ethylene glycol oxidation(EGOR)and ethanol oxidation(EOR),offering new opportunities towards the alcohol oxidation assisted hydrogen production.Specifically,Pd-Ru MNSs demonstrate excellent HER performance in alkaline electrolyte,requiring an overpotential of only 16mV to reach 10mAcm^(−2),significantly outperforming Pd mesoporous nanosheets and commercial catalysts.Density functional theory calculations reveal that the Ru sites in Pd-Ru MNSs could facilitate the water adsorption,accelerate the water dissociation,and optimize the hydrogen desorption,leading to the superior HER activity.Pd-Ru MNSs also exhibit high mass activities of 11.19 A mg^(−1)Pd for EGOR and 8.84 A mg^(−1)Pd for EOR,which is 7.8 and 9.6 times than that of commercial Pd/C,respectively.The EGOR reaction pathway over Pd-Ru MNSs was further investigated by using in situ Fourier-transform infrared spectroscopy. 展开更多
关键词 Two-dimensional noble metal nanomaterials Submonolayer modification ELECTROCATALYSIS Hydrogen evolution reaction Alcohol oxidation reaction
在线阅读 下载PDF
MOF-Derived Oxygen-Vacancy-Rich ZrO_(2)/UiO-66-NH_(2)for Efficient Visible-Light-Driven Oxidation of Benzyl Alcohol
20
作者 Yanyan Song Zhichao Sun +3 位作者 Jiamin Sun Ying-Ya Liu Anjie Wang Chong Peng 《Transactions of Tianjin University》 2025年第4期421-435,共15页
The development of efficient photocatalysts for selective organic transformations under visible light remains a major challenge in sustainable chemistry.In this study,we present a straightforward solvothermal strategy... The development of efficient photocatalysts for selective organic transformations under visible light remains a major challenge in sustainable chemistry.In this study,we present a straightforward solvothermal strategy for fabricating a defect-engineered ZrO_(2)/UiO-66-NH_(2)hybrid material with abundant oxygen vacancies,enabling the visible-light-driven oxidation of benzyl alcohol to benzaldehyde.By optimizing the solvothermal treatment duration,the composite(UiO-66-NH_(2)-2h)achieves a 74.1%conversion of benzyl alcohol with>99%selectivity toward benzaldehyde under mild conditions,substantially out-performing pristine UiO-66-NH_(2).Structural and mechanistic studies reveal that the solvothermal process induces the in situ formation of ultrasmall,uniformly dispersed ZrO_(2)nanoparticles(~2.3 nm)within the MOF matrix,while simultaneously generating abundant oxygen vacancies,as confirmed by XPS,EPR,and HRTEM analyses.The defect-mediated electronic structure of the ZrO_(2)/UiO-66-NH_(2)hybrid enhances visible-light absorption,facilitates charge carrier separation,and pro-motes efficient activation of O_(2)into superoxide radicals(·O_(2)^(−)),the primary reactive species.Transient photocurrent measure-ments and electrochemical impedance spectroscopy further verify the improved charge separation efficiency.The synergistic interplay between oxygen vacancies and the intimate ZrO_(2)/UiO-66-NH_(2)interface provides a unique defect-mediated charge transfer pathway,distinguishing this system from conventional heterojunctions.This study demonstrates a facile,one-step approach to integrate defect engineering with interfacial hybridization in MOF-based photocatalysts,off ering a scalable route for solar-driven organic synthesis. 展开更多
关键词 Visible-light photocatalysis Benzyl alcohol oxidation Oxygen vacancy HETEROSTRUCTURE UiO-66-NH_(2)
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部