This paper proposes a new facial beautification method using facial rejuvenation based on the age evolution. Traditional facial beautification methods only focus on the color of skin and deformation and do the transfo...This paper proposes a new facial beautification method using facial rejuvenation based on the age evolution. Traditional facial beautification methods only focus on the color of skin and deformation and do the transformation based on an experimental standard of beauty. Our method achieves the beauty effect by making facial image looks younger, which is different from traditional methods and is more reasonable than them. Firstly, we decompose the image into different layers and get a detail layer. Secondly, we get an age-related parameter: the standard deviation of the Gaussian distribution that the detail layer follows, and the support vector machine (SVM) regression is used to fit a function about the age and the standard deviation. Thirdly, we use this function to estimate the age of input image and generate a new detail layer with a new standard deviation which is calculated by decreasing the age. Lastly, we combine the original layers and the new detail layer to get a new face image. Experimental results show that this algo- rithm can make facial image become more beautiful by facial rejuvenation. The proposed method opens up a new way about facial beautification, and there are great potentials for applications.展开更多
In this study, we report U–Pb and Lu–Hf isotopic data for zircons from the Mesozoic sandstones of the Upper Yangtze area, which provide critical constraints on the provenance of these sediments and further shed ligh...In this study, we report U–Pb and Lu–Hf isotopic data for zircons from the Mesozoic sandstones of the Upper Yangtze area, which provide critical constraints on the provenance of these sediments and further shed light on the crustal evolution of the Upper Yangtze block. The results of isotopic chronology indicate the following:(1) The provenances of the study area are very complex, and the tectonic evolution process is relatively closed.(2) The provenances are mainly Archean–Proterozoic crystalline basement or recycled material; Paleoproterozoic crustal accretion in the western margin of the Yangtze block and Neoproterozoic magmatic activities related to subduction of the western margin of the Yangtze block; early Cambrian oceanic magmatic activity, which resulted from the intraplate extension of the northern margin of the Yangtze block; late Ordovician–early Silurian magmatic activity in the northern Yangtze block and Hercynian–Indochina uplift and erosion during the Hercynian movement.(3) The Yangtze crustal growth is episodic, and an increasing amount of ancient recycled material became part of the magmatic activity, as the zircon U–Pb ages are relatively young.展开更多
文摘This paper proposes a new facial beautification method using facial rejuvenation based on the age evolution. Traditional facial beautification methods only focus on the color of skin and deformation and do the transformation based on an experimental standard of beauty. Our method achieves the beauty effect by making facial image looks younger, which is different from traditional methods and is more reasonable than them. Firstly, we decompose the image into different layers and get a detail layer. Secondly, we get an age-related parameter: the standard deviation of the Gaussian distribution that the detail layer follows, and the support vector machine (SVM) regression is used to fit a function about the age and the standard deviation. Thirdly, we use this function to estimate the age of input image and generate a new detail layer with a new standard deviation which is calculated by decreasing the age. Lastly, we combine the original layers and the new detail layer to get a new face image. Experimental results show that this algo- rithm can make facial image become more beautiful by facial rejuvenation. The proposed method opens up a new way about facial beautification, and there are great potentials for applications.
基金financially supported by the China Geological Survey(CGS,Grant No.DD20160183)the Major State Research Development Program of China(Grant No.2016YFC0600202)
文摘In this study, we report U–Pb and Lu–Hf isotopic data for zircons from the Mesozoic sandstones of the Upper Yangtze area, which provide critical constraints on the provenance of these sediments and further shed light on the crustal evolution of the Upper Yangtze block. The results of isotopic chronology indicate the following:(1) The provenances of the study area are very complex, and the tectonic evolution process is relatively closed.(2) The provenances are mainly Archean–Proterozoic crystalline basement or recycled material; Paleoproterozoic crustal accretion in the western margin of the Yangtze block and Neoproterozoic magmatic activities related to subduction of the western margin of the Yangtze block; early Cambrian oceanic magmatic activity, which resulted from the intraplate extension of the northern margin of the Yangtze block; late Ordovician–early Silurian magmatic activity in the northern Yangtze block and Hercynian–Indochina uplift and erosion during the Hercynian movement.(3) The Yangtze crustal growth is episodic, and an increasing amount of ancient recycled material became part of the magmatic activity, as the zircon U–Pb ages are relatively young.