The rapid development of urban rail transit has posed increasing construction and operational challenges for metro tunnels,often leading to structural damage.Grouting technology using cement-based materials is widely ...The rapid development of urban rail transit has posed increasing construction and operational challenges for metro tunnels,often leading to structural damage.Grouting technology using cement-based materials is widely applied to address issues such as seepage,leakage,and alignment correction in shield tunnels.This study investigates the additional stress induced by grouting in silty soil layers,using cement-based grouts with different water-to-cement ratios and polyurethane-modified cement-based materials.Results show that additional stress decreases with depth and is more influenced by horizontal distance from the grouting point.In staged grouting,the first injection phase contributes about 50%of the peak additional stress.A lower water-to-cement ratio(e.g.,0.6)increases additional stress but reduces grout flowability,while a higher ratio improves diffusion but increases the risk of grout loss.(≥1.0)The polyurethane-modified cement-based material enhances stress transfer performance,increasing peak additional stress by approximately 10%.These findings provide theoretical guidance for optimizing material selection and grouting design in metro tunnel repair within silty soil layers.展开更多
The coupling effect of dual-parallel rotor connected stator permanent magnet synchronous motor not only affects the magnetic field in the coupling area, but also generates an additional magnetic field in the uncoupled...The coupling effect of dual-parallel rotor connected stator permanent magnet synchronous motor not only affects the magnetic field in the coupling area, but also generates an additional magnetic field in the uncoupled area.The characteristics of the additional magnetic field and its influence on electromagnetic torque are studied in this paper.The topology and parameters of motor are described briefly.The existence of additional magnetic field is proved by the simulation models under two boundary conditions, and its characteristics and source are analyzed. The analytical model is established, and the influence of key parameters on the additional magnetic field is discussed. On this basis, the influence of the additional magnetic field on the electromagnetic torque of the motor is studied, and the analytical expression of the additional torque is constructed.The fluctuation rule is analyzed, and the additional magnetic field separation model is proposed. The theoretical analysis and simulation results reveal and improve the internal mechanism of reducing motor torque ripple by optimizing the duty angle and coupling distance. Finally, a prototype test platform is built to verify the correctness of the proposed theory and the accuracy of the simulation model.展开更多
This study explores the multifaceted dynamics of silence among Englishas an Additional Language(EAL)learners in Grade 1 STEM(Science,Technology,Engineering,and Mathematics)classrooms throughnarrative inquiry methodolo...This study explores the multifaceted dynamics of silence among Englishas an Additional Language(EAL)learners in Grade 1 STEM(Science,Technology,Engineering,and Mathematics)classrooms throughnarrative inquiry methodology.Drawing on four weeks of teachingpracticum observations,the findings reveal that silence operates not asdisengagement but as cognitive engagement,cultural negotiation,identity management,and emotional self-regulation.Classroom silence,influenced by cultural communication norms,strategic agency,andemotional safety needs,highlights the inadequacy of traditional modelsof verbal participation.By positioning silence as a legitimate form ofparticipation,the study argues for culturally sustaining pedagogicalpractices that validate multimodal and non-verbal student contributions.Insights are also connected to challenges and opportunities in China'semerging inquiry-based STEM education efforts.This research advancesunderstandings of inclusive participation and offers pedagogicalrecommendations for linguistically diverse classrooms.展开更多
Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit...Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.展开更多
Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely us...Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely used in fields such as injection molding,die casting,and stamping dies.Adding reinforcing particles into steel is an effective means to improve its performance.Nb/18Ni300 composites were fabricated by LPBF using two kinds of Nb powders with different particle sizes,and their microstructures and properties were studied.The results show that the unmelted Nb particles are uniformly distributed in the 18Ni300 matrix and the grains are refined,which is particularly pronounced with fine Nb particles.In addition,element diffusion occurs between the particles and the matrix.The main phases of the base alloy are α-Fe and a small amount of γ-Fe.With the addition of Nb,part of the α-Fe is transformed into γ-Fe,and unmelted Nb phases appear.The addition of Nb also enhances the hardness and wear resistance of the composites but slightly reduces their tensile properties.After aging treatment,the molten pools and grain boundaries become blurred,grains are further refined,and the interfaces around the particles are thinned.The aging treatment also promotes the formation of reverted austenite.The hardness,ultimate tensile strength,and volumetric wear rate of the base alloy reach 51.9 HRC,1704 MPa,and 17.8×10^(-6) mm^(3)/(N·m),respectively.In contrast,the sample added with fine Nb particles has the highest hardness(56.1 HRC),ultimate tensile strength(1892 MPa)and yield strength(1842 MPa),and the volume wear rate of the sample added with coarse Nb particles is reduced by 90%to 1.7×10^(-6) mm^(3)/(N·m).展开更多
Additive manufacturing(AM)technology has emerged as a viable solution for manufacturing complexshaped WC−Co cemented carbide products,thereby expanding their applications in industries such as resource mining,equipmen...Additive manufacturing(AM)technology has emerged as a viable solution for manufacturing complexshaped WC−Co cemented carbide products,thereby expanding their applications in industries such as resource mining,equipment manufacturing,and electronic information.This review provides a comprehensive summary of the progress of AM technology in WC−Co cemented carbides.The fundamental principles and classification of AM techniques are introduced,followed by a categorization and evaluation of the AM techniques for WC−Co cemented carbides.These techniques are classified as either direct AM technology(DAM)or indirect AM technology(IDAM),depending on their inclusion of post-processes like de-binding and sintering.Through an analysis of microstructure features,the most suitable AM route for WC−Co cemented carbide products with controllable microstructure is identified as the indirect AM technology,such as binder jet printing(BJP),which integrates AM with conventional powder metallurgy.展开更多
Additive manufacturing(AM),with its high flexibility,cost-effectiveness,and customization,significantly accelerates the advancement of nanogenerators,contributing to sustainable energy solutions and the Internet of Th...Additive manufacturing(AM),with its high flexibility,cost-effectiveness,and customization,significantly accelerates the advancement of nanogenerators,contributing to sustainable energy solutions and the Internet of Things.In this review,an in-depth analysis of AM for piezoelectric and triboelectric nanogenerators is presented from the perspectives of fundamental mechanisms,recent advancements,and future prospects.It highlights AM-enabled advantages of versatility across materials,structural topology optimization,microstructure design,and integrated printing,which enhance critical performance indicators of nanogenerators,such as surface charge density and piezoelectric constant,thereby improving device performance compared to conventional fabrication.Common AM techniques for nanogenerators,including fused deposition modeling,direct ink writing,stereolithography,and digital light processing,are systematically examined in terms of their working principles,improved metrics(output voltage/current,power density),theoretical explanation,and application scopes.Hierarchical relationships connecting AM technologies with performance optimization and applications of nanogenerators are elucidated,providing a solid foundation for advancements in energy harvesting,self-powered sensors,wearable devices,and human-machine interaction.Furthermore,the challenges related to fabrication quality,cross-scale manufacturing,processing efficiency,and industrial deployment are critically discussed.Finally,the future prospects of AM for nanogenerators are explored,aiming to foster continuous progress and innovation in this field.展开更多
Aqueous zinc metal batteries(AZMBs)are promising candidates for renewable energy storage,yet their practical deployment in subzero environments remains challenging due to electrolyte freezing and dendritic growth.Alth...Aqueous zinc metal batteries(AZMBs)are promising candidates for renewable energy storage,yet their practical deployment in subzero environments remains challenging due to electrolyte freezing and dendritic growth.Although organic additives can enhance the antifreeze properties of electrolytes,their weak polarity diminishes ionic conductivity,and their flammability poses safety concerns,undermining the inherent advantages of aqueous systems.Herein,we present a cost-effective and highly stable Na_(2)SO_(4)additive introduced into a Zn(ClO_(4))2-based electrolyte to create an organic-free antifreeze electrolyte.Through Raman spectroscopy,in situ optical microscopy,densityfunctional theory computations,and molecular dynamics simulations,we demonstrate that Na+ions improve low-temperature electrolyte performance and mitigate dendrite formation by regulating uniform Zn^(2+)deposition through preferential adsorption and electrostatic interactions.As a result,the Zn||Zn cells using this electrolyte achieve a remarkable cycling life of 360 h at-40℃ with 61% depth of discharge,and the Zn||PANI cells retained an ultrahigh capacity retention of 91%even after 8000 charge/discharge cycles at-40℃.This work proposes a cost-effective and practical approach for enhancing the long-term operational stability of AZMBs in low-temperature environments.展开更多
The unique crystallographic lamellar microstructure(CLM) Ni-based superalloys fabricated by laser powder bed fusion(LPBF) exhibits excellent tensile properties.This study aims to investigate CLM's high-temperature...The unique crystallographic lamellar microstructure(CLM) Ni-based superalloys fabricated by laser powder bed fusion(LPBF) exhibits excellent tensile properties.This study aims to investigate CLM's high-temperature stress rupture behavior and use these findings to improve the additive manufacturing process.The result shows that the high temperature-induced intergranular fracture in <110> grain region is responsible for stress rupture failure under both conditions of 760 ℃/780 MPa and 980 ℃/260 MPa.Among them,the sub-grain boundary fracture occurs only under high temperature and low stress,980 ℃/260 MPa.Due to the severe intergranular fracture induced by stray grains,the stress rupture life is very low under both conditions.According to the finite element simulation,the formation of stray grains stems from the unstable heat flow within the melt pool during the process.In addition,the shorter stress rupture lifetime does not excite a more pronounced dislocation network around the γ′ phase.However,the deformation twins can still be activated inside the <110> grains,so it has excellent plasticity under both test conditions.Finally,this work indicates that the future optimization of CLM by LPBF should focus on eliminating of high-angle grain boundaries in <110> grains.展开更多
Low-velocity impact tests are carried out to explore the energy absorption characteristics of bio-inspired lattices,mimicking the architecture of the marine sponge organism Euplectella aspergillum.These sea sponge-ins...Low-velocity impact tests are carried out to explore the energy absorption characteristics of bio-inspired lattices,mimicking the architecture of the marine sponge organism Euplectella aspergillum.These sea sponge-inspired lattice structures feature a square-grid 2D lattice with double diagonal bracings and are additively manufactured via digital light processing(DLP).The collapse strength and energy absorption capacity of sea sponge lattice structures are evaluated under various impact conditions and are compared to those of their constituent square-grid and double diagonal lattices.This study demonstrates that sea sponge lattices can achieve an 11-fold increase in energy absorption compared to the square-grid lattice,due to the stabilizing effect of the double diagonal bracings prompting the structure to collapse layer-bylayer under impact.By adjusting the thickness ratio in the sea sponge lattice,up to 76.7%increment in energy absorption is attained.It is also shown that sea-sponge lattices outperform well-established energy-absorbing materials of equal weight,such as hexagonal honeycombs,confirming their significant potential for impact mitigation.Additionally,this research highlights the enhancements in energy absorption achieved by adding a small amount(0.015 phr)of Multi-Walled Carbon Nanotubes(MWCNTs)to the photocurable resin,thus unlocking new possibilities for the design of innovative lightweight structures with multifunctional attributes.展开更多
When am I ever going to use this?OCEANOGRAPHY A deep-sea submersible descends 120 feet each minute to reach the bottom of Challenger Deep in the Pacific Ocean. A descent of 120 feet is represented by-120. The table sh...When am I ever going to use this?OCEANOGRAPHY A deep-sea submersible descends 120 feet each minute to reach the bottom of Challenger Deep in the Pacific Ocean. A descent of 120 feet is represented by-120. The table shows the submersible's depth after various numbers of minutes.1. Write two different addition sentences that could be used to find the submersible's depth after 3 minutes. Then find their sums.展开更多
Heart disease remains a leading cause of mortality worldwide,emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention.However,existing Deep Learni...Heart disease remains a leading cause of mortality worldwide,emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention.However,existing Deep Learning(DL)approaches often face several limitations,including inefficient feature extraction,class imbalance,suboptimal classification performance,and limited interpretability,which collectively hinder their deployment in clinical settings.To address these challenges,we propose a novel DL framework for heart disease prediction that integrates a comprehensive preprocessing pipeline with an advanced classification architecture.The preprocessing stage involves label encoding and feature scaling.To address the issue of class imbalance inherent in the personal key indicators of the heart disease dataset,the localized random affine shadowsampling technique is employed,which enhances minority class representation while minimizing overfitting.At the core of the framework lies the Deep Residual Network(DeepResNet),which employs hierarchical residual transformations to facilitate efficient feature extraction and capture complex,non-linear relationships in the data.Experimental results demonstrate that the proposed model significantly outperforms existing techniques,achieving improvements of 3.26%in accuracy,3.16%in area under the receiver operating characteristics,1.09%in recall,and 1.07%in F1-score.Furthermore,robustness is validated using 10-fold crossvalidation,confirming the model’s generalizability across diverse data distributions.Moreover,model interpretability is ensured through the integration of Shapley additive explanations and local interpretable model-agnostic explanations,offering valuable insights into the contribution of individual features to model predictions.Overall,the proposed DL framework presents a robust,interpretable,and clinically applicable solution for heart disease prediction.展开更多
Due to the safety,high energy density,and rapid charging feature,aqueous zinc-ion batteries(AZIBs)have attracted great attention in large-scale energy storage systems.Although excellent electrochemical performances ha...Due to the safety,high energy density,and rapid charging feature,aqueous zinc-ion batteries(AZIBs)have attracted great attention in large-scale energy storage systems.Although excellent electrochemical performances have been achieved,the cycling stabilities of AZIBs are still unsatisfactory,especially at low current densities,because the cathode materials are prone to being dissolved into electrolytes.Here we develop a unique zincophilic and hydrophobic amorphous additive of ZnSnO_(3)(ZSO),which effectively prevents the irreversible dissolution and deamination of NH_(4)V_(4)O_(10)(NVO)cathode.Benefiting from the ingenious design,NVO@ZSO cathode delivers the best cycling stability at a low current density(0.1 A·g^(-1)),with an ultrahigh capacity retention of 98.8% after 300 cycles.Besides,at a high current density of 5 A·g^(-1),the NVO@ZSO cathode still possesses excellent cycling performance,and a reversible capacity of 284.6 mAh·g^(-1)is achieved even after 7000 cycles.The mechanism is clarified with the aid of density function theory calculations and molecular dynamics simulations.These findings provide a new paradigm for designing stable cathodes by introducing amorphous additive,which should promote further application exploration of AZIBs at low current densities.展开更多
To analyse a possible way to improve the propulsion performance of ships,the unstructured grid and the Reynolds Average Navier-Stokes equations were used to calculate the performance of a propeller and rudder fitted w...To analyse a possible way to improve the propulsion performance of ships,the unstructured grid and the Reynolds Average Navier-Stokes equations were used to calculate the performance of a propeller and rudder fitted with additional thrust fins in the viscous flow field.The computational fluid dynamics software FLUENT was used to simulate the thrust and torque coefficient as a function of the advance coefficient of propeller and the thrust efficiency of additional thrust fins. The pressure and velocity flow behind the propeller was calculated. The geometrical nodes of the propeller were constituted by FORTRAN program and the NUMBS method was used to create a configuration of the propeller,which was then used by GAMMBIT to generate the calculation model. The thrust efficiency of fins was calculated as a function of the number of additional fins and the attack angles. The results of the calculations agree fairly well with experimental data,which shows that the viscous flow solution we present is useful in simulating the performance of propellers and rudders with additional fins.展开更多
Human epidermal growth factor receptor 2(HER2)-overexpressing breast cancer is an aggressive phenotype with a poor prognosis,and can easily metastasize and recur.Currently,chemotherapy plus HER2-targeted therapy is th...Human epidermal growth factor receptor 2(HER2)-overexpressing breast cancer is an aggressive phenotype with a poor prognosis,and can easily metastasize and recur.Currently,chemotherapy plus HER2-targeted therapy is the standard systemic treatment for most of these patients.Given that neoadjuvant chemotherapy(NAC)has an efficacy equivalent to that of adjuvant chemotherapy and some additional benefits,many patients,especially those with more advanced tumors,prefer NAC and generally will not receive additional chemotherapy after surgery,irrespective of the pathological response.However,achieving pathological complete response to NAC is strongly correlated with prognosis,especially in triple-negative and HER2-overexpressing breast cancer.Therefore,postoperative treatment of these patients with residual diseases should be optimized to achieve favorable outcomes.The CREATE-X study has confirmed that additional chemotherapy can improve the outcomes of patients with HER2-negative residual disease after NAC.In addition,chemotherapy plays an indispensable role in the treatment of patients who receive surgery directly or who have recurrent lesions.Therefore,can additional chemotherapy improve prognosis of patients with HER2-overexpressing residual breast cancer?At present,no studies have compared the efficacy of additional chemotherapy plus trastuzumab with that of anti-HER2 therapy alone in residual cancer.The KATHERINE study revealed that trastuzumab emtansine(T-DM1)can reduce the risk of recurrence or death by 50%compared with trastuzumab in patients with HER2-positive residual invasive breast cancer after neoadjuvant therapy.T-DM1 is an antibody-drug conjugate of trastuzumab and the cytotoxic agent emtansine,and thus,to an extent,T-DM1 is equivalent to simultaneous application of chemotherapy and targeted therapy.However,high cost and low accessibility limit its use especially in low-and middle-income countries and regions.Hence,we proposed this perspective that additional chemotherapy plus trastuzumab should be given to HER2-overexpressing breast cancer patients with residual disease after NAC to improve their prognosis by discussing that the efficacy of additional chemotherapy plus trastuzumab is superior to that of anti-HER2 therapy alone and not inferior to T-DM1.Additional chemotherapy plus trastuzumab-based HER2-targeted therapy can be used as an alternative regimen to T-DM1 when T-DM1 is unavailable.However,further clinical research on the selection of chemotherapeutic agents is warranted.展开更多
An alluvium with a sandy aquifer at the bottom,but lacking an effective impermeable layer between the sandy aquifer and bedrock is referred to as a special alluvial stratum.Impacted by the drainage of the aquifer due ...An alluvium with a sandy aquifer at the bottom,but lacking an effective impermeable layer between the sandy aquifer and bedrock is referred to as a special alluvial stratum.Impacted by the drainage of the aquifer due to mining activities,a shaft wall in this special alluvial stratum will be subject to a downward load by an additional vertical force which must be taken into consideration in the design of the shaft wall.The complexity of interaction between shaft wall and the surrounding walls makes it extremely difficult to determine this additional vertical force.For a particular shaft wall in an extra-thick alluvium and assuming that the friction coefficient between shaft wall and stratum does not change with depth,an analysis of a numerical simulation of the stress within the shaft wall has been carried out.Growth and size of the additional vertical stress have been obtained,based on specific values of the friction coefficient,the modulus of elasticity of the drainage layer and the thickness of the drainage layer.Subsequently, the safety of shaft walls with different structural types was studied and a more suitable structural design,providing an important basis for the design of shaft walls,is promoted.展开更多
In this study,the tomography of dynamic stress coefficient(TDSC)was established based on a mechanical model of stress wave propagation in bedding planes and a mathematical model of the stress wave attenuation in rock ...In this study,the tomography of dynamic stress coefficient(TDSC)was established based on a mechanical model of stress wave propagation in bedding planes and a mathematical model of the stress wave attenuation in rock masses.The reliability of the TDSC was verified by a linear bedding plane model and field monitoring.Generally,the TDSC in the dynamic stress propagation of bedding planes increases with the following conditions:(1)the increase of the normal stiffness of the bedding plane,(2)the increase of the incident angle of the stress wave,(3)the decrease of the incident frequency of the stress wave,or(4)the growth of three ratios(the ratios of rock densities,elastic moduli,and the Poisson’s ratios)of rocks on either side of bedding planes.The additional stress weakens TDSC linearly and slowly during the stress wave propagation in bedding planes,and the weakening effect increases with the growth of the three ratios.Besides,the TDSC decreases exponentially in the rock mass as propagation distance increases.In a field case,the TDSC decreases significantly as vertical and horizontal distances increase and its wave range increases as vertical distance increases in the sedimentary rock layers.展开更多
A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement ...A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement (among) the rail, the sleeper and the beam is taken into account. An example is presented and numerical results are compared. The results show that the additional longitudinal forces calculated with the new model are less than those of the previous, especially in the case of the flexible pier bridges. The new model is also suitable for the analysis of the additional longitudinal force transmission between rails and bridges of ballastless track with small resistance fasteners without taking the sleeper displacement into account, and compared with the ballast bridges, the ballastless bridges have a much stronger additional longitudinal force transmission between the continuously welded rails and the bridges.展开更多
The model of skaft lining under force is developed on the basis of the special stratum condition led to sbart cracking- The model is broken into 3 sub-questions to solve separately. According to the principle of super...The model of skaft lining under force is developed on the basis of the special stratum condition led to sbart cracking- The model is broken into 3 sub-questions to solve separately. According to the principle of superposition and strain compatibility, a second kind Fredholm integral equation is generated.A theoretical solution to vertical additional force on shaft lining is obtained by numerical method to the integral equation.展开更多
基金supported by the National Natural Science Foundation of China(No.42477185)Natural Science Foundation of Zhejiang Province(LQ24A020015)+1 种基金Research Achievement Award Cultivation Project of Zhejiang University of Science and Technology(2023JLYB001)the Postgraduate Course Construction Project of Zhejiang University of Science and Technology(2024yjskj05).
文摘The rapid development of urban rail transit has posed increasing construction and operational challenges for metro tunnels,often leading to structural damage.Grouting technology using cement-based materials is widely applied to address issues such as seepage,leakage,and alignment correction in shield tunnels.This study investigates the additional stress induced by grouting in silty soil layers,using cement-based grouts with different water-to-cement ratios and polyurethane-modified cement-based materials.Results show that additional stress decreases with depth and is more influenced by horizontal distance from the grouting point.In staged grouting,the first injection phase contributes about 50%of the peak additional stress.A lower water-to-cement ratio(e.g.,0.6)increases additional stress but reduces grout flowability,while a higher ratio improves diffusion but increases the risk of grout loss.(≥1.0)The polyurethane-modified cement-based material enhances stress transfer performance,increasing peak additional stress by approximately 10%.These findings provide theoretical guidance for optimizing material selection and grouting design in metro tunnel repair within silty soil layers.
基金supported in part by the Natural Science Foundation of Heilongjiang Province under Grant LH2023E084by the National Natural Science Foundation of China under Grant 51777048。
文摘The coupling effect of dual-parallel rotor connected stator permanent magnet synchronous motor not only affects the magnetic field in the coupling area, but also generates an additional magnetic field in the uncoupled area.The characteristics of the additional magnetic field and its influence on electromagnetic torque are studied in this paper.The topology and parameters of motor are described briefly.The existence of additional magnetic field is proved by the simulation models under two boundary conditions, and its characteristics and source are analyzed. The analytical model is established, and the influence of key parameters on the additional magnetic field is discussed. On this basis, the influence of the additional magnetic field on the electromagnetic torque of the motor is studied, and the analytical expression of the additional torque is constructed.The fluctuation rule is analyzed, and the additional magnetic field separation model is proposed. The theoretical analysis and simulation results reveal and improve the internal mechanism of reducing motor torque ripple by optimizing the duty angle and coupling distance. Finally, a prototype test platform is built to verify the correctness of the proposed theory and the accuracy of the simulation model.
文摘This study explores the multifaceted dynamics of silence among Englishas an Additional Language(EAL)learners in Grade 1 STEM(Science,Technology,Engineering,and Mathematics)classrooms throughnarrative inquiry methodology.Drawing on four weeks of teachingpracticum observations,the findings reveal that silence operates not asdisengagement but as cognitive engagement,cultural negotiation,identity management,and emotional self-regulation.Classroom silence,influenced by cultural communication norms,strategic agency,andemotional safety needs,highlights the inadequacy of traditional modelsof verbal participation.By positioning silence as a legitimate form ofparticipation,the study argues for culturally sustaining pedagogicalpractices that validate multimodal and non-verbal student contributions.Insights are also connected to challenges and opportunities in China'semerging inquiry-based STEM education efforts.This research advancesunderstandings of inclusive participation and offers pedagogicalrecommendations for linguistically diverse classrooms.
基金National Key Research and Development Program of China(2022YFB4600902)Shandong Provincial Science Foundation for Outstanding Young Scholars(ZR2024YQ020)。
文摘Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.
基金Key-Area Research and Development Program of Guangdong Province(2023B0909020004)Project of Innovation Research Team in Zhongshan(CXTD2023006)+1 种基金Natural Science Foundation of Guangdong Province(2023A1515011573)Zhongshan Social Welfare Science and Technology Research Project(2024B2022)。
文摘Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely used in fields such as injection molding,die casting,and stamping dies.Adding reinforcing particles into steel is an effective means to improve its performance.Nb/18Ni300 composites were fabricated by LPBF using two kinds of Nb powders with different particle sizes,and their microstructures and properties were studied.The results show that the unmelted Nb particles are uniformly distributed in the 18Ni300 matrix and the grains are refined,which is particularly pronounced with fine Nb particles.In addition,element diffusion occurs between the particles and the matrix.The main phases of the base alloy are α-Fe and a small amount of γ-Fe.With the addition of Nb,part of the α-Fe is transformed into γ-Fe,and unmelted Nb phases appear.The addition of Nb also enhances the hardness and wear resistance of the composites but slightly reduces their tensile properties.After aging treatment,the molten pools and grain boundaries become blurred,grains are further refined,and the interfaces around the particles are thinned.The aging treatment also promotes the formation of reverted austenite.The hardness,ultimate tensile strength,and volumetric wear rate of the base alloy reach 51.9 HRC,1704 MPa,and 17.8×10^(-6) mm^(3)/(N·m),respectively.In contrast,the sample added with fine Nb particles has the highest hardness(56.1 HRC),ultimate tensile strength(1892 MPa)and yield strength(1842 MPa),and the volume wear rate of the sample added with coarse Nb particles is reduced by 90%to 1.7×10^(-6) mm^(3)/(N·m).
基金supported by Major Science and Technology Projects in Fujian Province,China(No.2023HZ021005)State Key Laboratory of Powder Metallurgy,Central South University,ChinaFujian Key Laboratory of Rare-earth Functional Materials,China。
文摘Additive manufacturing(AM)technology has emerged as a viable solution for manufacturing complexshaped WC−Co cemented carbide products,thereby expanding their applications in industries such as resource mining,equipment manufacturing,and electronic information.This review provides a comprehensive summary of the progress of AM technology in WC−Co cemented carbides.The fundamental principles and classification of AM techniques are introduced,followed by a categorization and evaluation of the AM techniques for WC−Co cemented carbides.These techniques are classified as either direct AM technology(DAM)or indirect AM technology(IDAM),depending on their inclusion of post-processes like de-binding and sintering.Through an analysis of microstructure features,the most suitable AM route for WC−Co cemented carbide products with controllable microstructure is identified as the indirect AM technology,such as binder jet printing(BJP),which integrates AM with conventional powder metallurgy.
基金support from the Research Committee of The Hong Kong Polytechnic University(Project codes:RMJK and 4-ZZSJ)supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.PolyU15212523).
文摘Additive manufacturing(AM),with its high flexibility,cost-effectiveness,and customization,significantly accelerates the advancement of nanogenerators,contributing to sustainable energy solutions and the Internet of Things.In this review,an in-depth analysis of AM for piezoelectric and triboelectric nanogenerators is presented from the perspectives of fundamental mechanisms,recent advancements,and future prospects.It highlights AM-enabled advantages of versatility across materials,structural topology optimization,microstructure design,and integrated printing,which enhance critical performance indicators of nanogenerators,such as surface charge density and piezoelectric constant,thereby improving device performance compared to conventional fabrication.Common AM techniques for nanogenerators,including fused deposition modeling,direct ink writing,stereolithography,and digital light processing,are systematically examined in terms of their working principles,improved metrics(output voltage/current,power density),theoretical explanation,and application scopes.Hierarchical relationships connecting AM technologies with performance optimization and applications of nanogenerators are elucidated,providing a solid foundation for advancements in energy harvesting,self-powered sensors,wearable devices,and human-machine interaction.Furthermore,the challenges related to fabrication quality,cross-scale manufacturing,processing efficiency,and industrial deployment are critically discussed.Finally,the future prospects of AM for nanogenerators are explored,aiming to foster continuous progress and innovation in this field.
基金financially supported by the National Natural Science Foundation of China(Grant No.52377206,52307237)Natural Science Foundation of Heilongjiang Province of China(YQ2024E046)Postdoctoral Science Foundation of Heilongjiang Province of China(LBH-TZ2413,LBH-Z23198)。
文摘Aqueous zinc metal batteries(AZMBs)are promising candidates for renewable energy storage,yet their practical deployment in subzero environments remains challenging due to electrolyte freezing and dendritic growth.Although organic additives can enhance the antifreeze properties of electrolytes,their weak polarity diminishes ionic conductivity,and their flammability poses safety concerns,undermining the inherent advantages of aqueous systems.Herein,we present a cost-effective and highly stable Na_(2)SO_(4)additive introduced into a Zn(ClO_(4))2-based electrolyte to create an organic-free antifreeze electrolyte.Through Raman spectroscopy,in situ optical microscopy,densityfunctional theory computations,and molecular dynamics simulations,we demonstrate that Na+ions improve low-temperature electrolyte performance and mitigate dendrite formation by regulating uniform Zn^(2+)deposition through preferential adsorption and electrostatic interactions.As a result,the Zn||Zn cells using this electrolyte achieve a remarkable cycling life of 360 h at-40℃ with 61% depth of discharge,and the Zn||PANI cells retained an ultrahigh capacity retention of 91%even after 8000 charge/discharge cycles at-40℃.This work proposes a cost-effective and practical approach for enhancing the long-term operational stability of AZMBs in low-temperature environments.
基金the financial support by the Project of Taihang Laboratory (No. A3023)Science Center for Gas Turbine Project (Grant No. P2022-CIV-002-001)。
文摘The unique crystallographic lamellar microstructure(CLM) Ni-based superalloys fabricated by laser powder bed fusion(LPBF) exhibits excellent tensile properties.This study aims to investigate CLM's high-temperature stress rupture behavior and use these findings to improve the additive manufacturing process.The result shows that the high temperature-induced intergranular fracture in <110> grain region is responsible for stress rupture failure under both conditions of 760 ℃/780 MPa and 980 ℃/260 MPa.Among them,the sub-grain boundary fracture occurs only under high temperature and low stress,980 ℃/260 MPa.Due to the severe intergranular fracture induced by stray grains,the stress rupture life is very low under both conditions.According to the finite element simulation,the formation of stray grains stems from the unstable heat flow within the melt pool during the process.In addition,the shorter stress rupture lifetime does not excite a more pronounced dislocation network around the γ′ phase.However,the deformation twins can still be activated inside the <110> grains,so it has excellent plasticity under both test conditions.Finally,this work indicates that the future optimization of CLM by LPBF should focus on eliminating of high-angle grain boundaries in <110> grains.
基金supported by the Khalifa University of Science and Technology internal grants(Nos.2021-CIRA-109,2020-CIRA-007,and 2020-CIRA-024).
文摘Low-velocity impact tests are carried out to explore the energy absorption characteristics of bio-inspired lattices,mimicking the architecture of the marine sponge organism Euplectella aspergillum.These sea sponge-inspired lattice structures feature a square-grid 2D lattice with double diagonal bracings and are additively manufactured via digital light processing(DLP).The collapse strength and energy absorption capacity of sea sponge lattice structures are evaluated under various impact conditions and are compared to those of their constituent square-grid and double diagonal lattices.This study demonstrates that sea sponge lattices can achieve an 11-fold increase in energy absorption compared to the square-grid lattice,due to the stabilizing effect of the double diagonal bracings prompting the structure to collapse layer-bylayer under impact.By adjusting the thickness ratio in the sea sponge lattice,up to 76.7%increment in energy absorption is attained.It is also shown that sea-sponge lattices outperform well-established energy-absorbing materials of equal weight,such as hexagonal honeycombs,confirming their significant potential for impact mitigation.Additionally,this research highlights the enhancements in energy absorption achieved by adding a small amount(0.015 phr)of Multi-Walled Carbon Nanotubes(MWCNTs)to the photocurable resin,thus unlocking new possibilities for the design of innovative lightweight structures with multifunctional attributes.
文摘When am I ever going to use this?OCEANOGRAPHY A deep-sea submersible descends 120 feet each minute to reach the bottom of Challenger Deep in the Pacific Ocean. A descent of 120 feet is represented by-120. The table shows the submersible's depth after various numbers of minutes.1. Write two different addition sentences that could be used to find the submersible's depth after 3 minutes. Then find their sums.
基金funded by Ongoing Research Funding Program for Project number(ORF-2025-648),King Saud University,Riyadh,Saudi Arabia.
文摘Heart disease remains a leading cause of mortality worldwide,emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention.However,existing Deep Learning(DL)approaches often face several limitations,including inefficient feature extraction,class imbalance,suboptimal classification performance,and limited interpretability,which collectively hinder their deployment in clinical settings.To address these challenges,we propose a novel DL framework for heart disease prediction that integrates a comprehensive preprocessing pipeline with an advanced classification architecture.The preprocessing stage involves label encoding and feature scaling.To address the issue of class imbalance inherent in the personal key indicators of the heart disease dataset,the localized random affine shadowsampling technique is employed,which enhances minority class representation while minimizing overfitting.At the core of the framework lies the Deep Residual Network(DeepResNet),which employs hierarchical residual transformations to facilitate efficient feature extraction and capture complex,non-linear relationships in the data.Experimental results demonstrate that the proposed model significantly outperforms existing techniques,achieving improvements of 3.26%in accuracy,3.16%in area under the receiver operating characteristics,1.09%in recall,and 1.07%in F1-score.Furthermore,robustness is validated using 10-fold crossvalidation,confirming the model’s generalizability across diverse data distributions.Moreover,model interpretability is ensured through the integration of Shapley additive explanations and local interpretable model-agnostic explanations,offering valuable insights into the contribution of individual features to model predictions.Overall,the proposed DL framework presents a robust,interpretable,and clinically applicable solution for heart disease prediction.
基金supported by the National Natural Science Foundation of China(Nos.U24A2055 and 92164103)the National Key R&D Program of China(No.2021YFA1200800)+2 种基金the Natural Science Foundation of Hubei Province(No.2024AFA052)Wuhan Science and Technology Bureau(Knowledge Innovation Program of Wuhan-Basic Research,No.2023010201010067)the Fundamental Research Funds for the Central Universities(No.2042023kf0187).
文摘Due to the safety,high energy density,and rapid charging feature,aqueous zinc-ion batteries(AZIBs)have attracted great attention in large-scale energy storage systems.Although excellent electrochemical performances have been achieved,the cycling stabilities of AZIBs are still unsatisfactory,especially at low current densities,because the cathode materials are prone to being dissolved into electrolytes.Here we develop a unique zincophilic and hydrophobic amorphous additive of ZnSnO_(3)(ZSO),which effectively prevents the irreversible dissolution and deamination of NH_(4)V_(4)O_(10)(NVO)cathode.Benefiting from the ingenious design,NVO@ZSO cathode delivers the best cycling stability at a low current density(0.1 A·g^(-1)),with an ultrahigh capacity retention of 98.8% after 300 cycles.Besides,at a high current density of 5 A·g^(-1),the NVO@ZSO cathode still possesses excellent cycling performance,and a reversible capacity of 284.6 mAh·g^(-1)is achieved even after 7000 cycles.The mechanism is clarified with the aid of density function theory calculations and molecular dynamics simulations.These findings provide a new paradigm for designing stable cathodes by introducing amorphous additive,which should promote further application exploration of AZIBs at low current densities.
文摘To analyse a possible way to improve the propulsion performance of ships,the unstructured grid and the Reynolds Average Navier-Stokes equations were used to calculate the performance of a propeller and rudder fitted with additional thrust fins in the viscous flow field.The computational fluid dynamics software FLUENT was used to simulate the thrust and torque coefficient as a function of the advance coefficient of propeller and the thrust efficiency of additional thrust fins. The pressure and velocity flow behind the propeller was calculated. The geometrical nodes of the propeller were constituted by FORTRAN program and the NUMBS method was used to create a configuration of the propeller,which was then used by GAMMBIT to generate the calculation model. The thrust efficiency of fins was calculated as a function of the number of additional fins and the attack angles. The results of the calculations agree fairly well with experimental data,which shows that the viscous flow solution we present is useful in simulating the performance of propellers and rudders with additional fins.
文摘Human epidermal growth factor receptor 2(HER2)-overexpressing breast cancer is an aggressive phenotype with a poor prognosis,and can easily metastasize and recur.Currently,chemotherapy plus HER2-targeted therapy is the standard systemic treatment for most of these patients.Given that neoadjuvant chemotherapy(NAC)has an efficacy equivalent to that of adjuvant chemotherapy and some additional benefits,many patients,especially those with more advanced tumors,prefer NAC and generally will not receive additional chemotherapy after surgery,irrespective of the pathological response.However,achieving pathological complete response to NAC is strongly correlated with prognosis,especially in triple-negative and HER2-overexpressing breast cancer.Therefore,postoperative treatment of these patients with residual diseases should be optimized to achieve favorable outcomes.The CREATE-X study has confirmed that additional chemotherapy can improve the outcomes of patients with HER2-negative residual disease after NAC.In addition,chemotherapy plays an indispensable role in the treatment of patients who receive surgery directly or who have recurrent lesions.Therefore,can additional chemotherapy improve prognosis of patients with HER2-overexpressing residual breast cancer?At present,no studies have compared the efficacy of additional chemotherapy plus trastuzumab with that of anti-HER2 therapy alone in residual cancer.The KATHERINE study revealed that trastuzumab emtansine(T-DM1)can reduce the risk of recurrence or death by 50%compared with trastuzumab in patients with HER2-positive residual invasive breast cancer after neoadjuvant therapy.T-DM1 is an antibody-drug conjugate of trastuzumab and the cytotoxic agent emtansine,and thus,to an extent,T-DM1 is equivalent to simultaneous application of chemotherapy and targeted therapy.However,high cost and low accessibility limit its use especially in low-and middle-income countries and regions.Hence,we proposed this perspective that additional chemotherapy plus trastuzumab should be given to HER2-overexpressing breast cancer patients with residual disease after NAC to improve their prognosis by discussing that the efficacy of additional chemotherapy plus trastuzumab is superior to that of anti-HER2 therapy alone and not inferior to T-DM1.Additional chemotherapy plus trastuzumab-based HER2-targeted therapy can be used as an alternative regimen to T-DM1 when T-DM1 is unavailable.However,further clinical research on the selection of chemotherapeutic agents is warranted.
文摘An alluvium with a sandy aquifer at the bottom,but lacking an effective impermeable layer between the sandy aquifer and bedrock is referred to as a special alluvial stratum.Impacted by the drainage of the aquifer due to mining activities,a shaft wall in this special alluvial stratum will be subject to a downward load by an additional vertical force which must be taken into consideration in the design of the shaft wall.The complexity of interaction between shaft wall and the surrounding walls makes it extremely difficult to determine this additional vertical force.For a particular shaft wall in an extra-thick alluvium and assuming that the friction coefficient between shaft wall and stratum does not change with depth,an analysis of a numerical simulation of the stress within the shaft wall has been carried out.Growth and size of the additional vertical stress have been obtained,based on specific values of the friction coefficient,the modulus of elasticity of the drainage layer and the thickness of the drainage layer.Subsequently, the safety of shaft walls with different structural types was studied and a more suitable structural design,providing an important basis for the design of shaft walls,is promoted.
基金This work is supported by the National Natural Science Foundation of China(Nos.51804099 and U1704129)the Focus Research and Special Development for Scientific and Technological Project of Henan Province(No.202102310542)+1 种基金the Fundamental Research Funds for the Central Universities(No.2018ZDPY02ZDPY02)the research fund of State Key Laboratory of Coal Resources and Safe Mining,CUMT(SKLCRSM19KF011).
文摘In this study,the tomography of dynamic stress coefficient(TDSC)was established based on a mechanical model of stress wave propagation in bedding planes and a mathematical model of the stress wave attenuation in rock masses.The reliability of the TDSC was verified by a linear bedding plane model and field monitoring.Generally,the TDSC in the dynamic stress propagation of bedding planes increases with the following conditions:(1)the increase of the normal stiffness of the bedding plane,(2)the increase of the incident angle of the stress wave,(3)the decrease of the incident frequency of the stress wave,or(4)the growth of three ratios(the ratios of rock densities,elastic moduli,and the Poisson’s ratios)of rocks on either side of bedding planes.The additional stress weakens TDSC linearly and slowly during the stress wave propagation in bedding planes,and the weakening effect increases with the growth of the three ratios.Besides,the TDSC decreases exponentially in the rock mass as propagation distance increases.In a field case,the TDSC decreases significantly as vertical and horizontal distances increase and its wave range increases as vertical distance increases in the sedimentary rock layers.
文摘A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement (among) the rail, the sleeper and the beam is taken into account. An example is presented and numerical results are compared. The results show that the additional longitudinal forces calculated with the new model are less than those of the previous, especially in the case of the flexible pier bridges. The new model is also suitable for the analysis of the additional longitudinal force transmission between rails and bridges of ballastless track with small resistance fasteners without taking the sleeper displacement into account, and compared with the ballast bridges, the ballastless bridges have a much stronger additional longitudinal force transmission between the continuously welded rails and the bridges.
文摘The model of skaft lining under force is developed on the basis of the special stratum condition led to sbart cracking- The model is broken into 3 sub-questions to solve separately. According to the principle of superposition and strain compatibility, a second kind Fredholm integral equation is generated.A theoretical solution to vertical additional force on shaft lining is obtained by numerical method to the integral equation.