期刊文献+
共找到249篇文章
< 1 2 13 >
每页显示 20 50 100
A precise tidal prediction mechanism based on the combination of harmonic analysis and adaptive network-based fuzzy inference system model 被引量:6
1
作者 ZHANG Zeguo YIN Jianchuan +2 位作者 WANG Nini HU Jiangqiang WANG Ning 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第11期94-105,共12页
An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variat... An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability. 展开更多
关键词 tidal level prediction harmonious analysis method adaptive network-based fuzzy inference system correlation analysis
在线阅读 下载PDF
Characteristics Prediction Method of Electro-hydraulic Servo Valve Based on Rough Set and Adaptive Neuro-fuzzy Inference System 被引量:11
2
作者 JIA Zhenyuan MA Jianwei WANG Fuji LIU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期200-208,共9页
Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after ass... Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting. 展开更多
关键词 characteristics prediction rough set adaptive neuro-fuzzy inference system electro-hydraulic servo valve artificial neural networks
在线阅读 下载PDF
Comparison between Neural Network and Adaptive Neuro-Fuzzy Inference System for Forecasting Chaotic Traffic Volumes
3
作者 Jiin-Po Yeh Yu-Chen Chang 《Journal of Intelligent Learning Systems and Applications》 2012年第4期247-254,共8页
This paper applies both the neural network and adaptive neuro-fuzzy inference system for forecasting short-term chaotic traffic volumes and compares the results. The architecture of the neural network consists of the ... This paper applies both the neural network and adaptive neuro-fuzzy inference system for forecasting short-term chaotic traffic volumes and compares the results. The architecture of the neural network consists of the input vector, one hidden layer and output layer. Bayesian regularization is employed to obtain the effective number of neurons in the hidden layer. The input variables and target of the adaptive neuro-fuzzy inference system are the same as those of the neural network. The data clustering technique is used to group data points so that the membership functions will be more tailored to the input data, which in turn greatly reduces the number of fuzzy rules. Numerical results indicate that these two models have almost the same accuracy, while the adaptive neuro-fuzzy inference system takes more time to train. It is also shown that although the effective number of neurons in the hidden layer is less than half the number of the input elements, the neural network can have satisfactory performance. 展开更多
关键词 NEURAL network adaptive NEURO-fuzzy inference system CHAOTIC TRAFFIC VOLUMES State Space Reconstruction
在线阅读 下载PDF
Adaptive neuro fuzzy inference system for classification of water quality status 被引量:9
4
作者 Han Yan,Zhihong Zou,Huiwen Wang School of Economics and Management,Beihang University,Beijing 100191,China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第12期1891-1896,共6页
An adaptive neuro fuzzy inference system was used for classifying water quality status of river. It applied several physical and inorganic chemical indicators including dissolved oxygen, chemical oxygen demand, and am... An adaptive neuro fuzzy inference system was used for classifying water quality status of river. It applied several physical and inorganic chemical indicators including dissolved oxygen, chemical oxygen demand, and ammonia-nitrogen. A data set (nine weeks, total 845 observations) was collected from 100 monitoring stations in all major river basins in China and used for training and validating the model. Up to 89.59% of the data could be correctly classified using this model. Such performance was more competitive when compared with artificial neural networks. It is applicable in evaluation and classification of water quality status. 展开更多
关键词 adaptive neuro fuzzy inference system artificial neural networks water quality status CLASSIFICATION
原文传递
Discrimination of quarry blasts and microearthquakes using adaptive neuro-fuzzy inference systems in the Tehran region
5
作者 Jamileh Vasheghani Farahani 《Episodes》 2015年第3期162-168,共7页
The purpose of this research is to demonstrate the use of Adaptive Neuro-Fuzzy Inference System(ANFIS)for discrimination between quarry blasts and microearthquakes in the Tehran region using data from the Broadband Ir... The purpose of this research is to demonstrate the use of Adaptive Neuro-Fuzzy Inference System(ANFIS)for discrimination between quarry blasts and microearthquakes in the Tehran region using data from the Broadband Iranian National Network Center(BIN).In the south and southeast of Tehran,a large number of quarry blasts“contaminate”the earthquake catalog.In order to identify the real seismicity(tectonic earthquakes)in the region,we need to discriminate quarry blasts from natural earthquakes in the catalog. 展开更多
关键词 quarry blasts quarry blasts contaminate adaptive neuro fuzzy inference system MICROEARTHQUAKES ANFIS identify real seismicity tectonic earthquakes discriminate quarry blasts broadband iranian national network
在线阅读 下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
6
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
在线阅读 下载PDF
Adaptive network fuzzy inference system based navigation controller for mobile robotAdaptive network fuzzy inference system based navigation controller for mobile robot 被引量:1
7
作者 Panati SUBBASH Kil To CHONG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第2期141-151,共11页
Autonomous navigation of a mobile robot in an unknown environment with highly cluttered obstacles is a fundamental issue in mobile robotics research. We propose an adaptive network fuzzy inference system(ANFIS) based ... Autonomous navigation of a mobile robot in an unknown environment with highly cluttered obstacles is a fundamental issue in mobile robotics research. We propose an adaptive network fuzzy inference system(ANFIS) based navigation controller for a differential drive mobile robot in an unknown environment with cluttered obstacles. Ultrasonic sensors are used to capture the environmental information around the mobile robot. A training data set required to train the ANFIS controller has been obtained by designing a fuzzy logic based navigation controller. Additive white Gaussian noise has been added to the sensor readings and fed to the trained ANFIS controller during mobile robot navigation, to account for the effect of environmental noise on sensor readings. The robustness of the proposed navigation controller has been evaluated by navigating the mobile robot in three different environments. The performance of the proposed controller has been verified by comparing the travelled path length/efficiency and bending energy obtained by the proposed method with reference mobile robot navigation controllers, such as neural network, fuzzy logic, and ANFIS. Simulation results presented in this paper show that the proposed controller has better performance compared with reference controllers and can successfully navigate in different environments without any collision with obstacles. 展开更多
关键词 adaptive network fuzzy inference system ADDITIVE WHITE GAUSSIAN noise Autonomous navigation Mobile robot
原文传递
Modelling and control PEMFC using fuzzy neural networks 被引量:1
8
作者 孙涛 闫思佳 +1 位作者 曹广益 朱新坚 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第10期1084-1089,共6页
Proton exchange membrane generation technology is highly efficient, clean and considered as the most hopeful “green” power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system in... Proton exchange membrane generation technology is highly efficient, clean and considered as the most hopeful “green” power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermo-dynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model and control online. This paper first simply analyzes the characters of the PEMFC; and then uses the approach and self-study ability of artificial neural networks to build the model of the nonlinear system, and uses the adaptive neural-networks fuzzy infer system (ANFIS) to build the temperature model of PEMFC which is used as the reference model of the control system, and adjusts the model parameters to control it online. The model and control are implemented in SIMULINK environment. Simulation results showed that the test data and model agreed well, so it will be very useful for optimal and real-time control of PEMFC system. 展开更多
关键词 Proton exchange membrane fuel cell adaptive neural-networks fuzzy infer system MODELING Neural network
在线阅读 下载PDF
基于自适应时域MPC的无人车轨迹跟踪控制 被引量:1
9
作者 丁承君 耿宇坤 +2 位作者 胡健鑫 王逸桐 王镇林 《科学技术与工程》 北大核心 2025年第23期9883-9891,共9页
为了提高无人车在不同路面附着系数和车速下的轨迹跟踪控制性能,提出一种自适应时域模型预测控制(model predictive control,MPC)算法。首先,基于三自由度车辆动力学模型设计MPC轨迹跟踪控制器。其次,引入融合准反射学习和高斯变异的粒... 为了提高无人车在不同路面附着系数和车速下的轨迹跟踪控制性能,提出一种自适应时域模型预测控制(model predictive control,MPC)算法。首先,基于三自由度车辆动力学模型设计MPC轨迹跟踪控制器。其次,引入融合准反射学习和高斯变异的粒子群优化算法(particle swarm optimization,PSO)对时域参数优化,获得不同工况下的离线最优时域数据集。然后,利用自适应神经模糊推理系统(adaptive network-based fuzzy inference system,ANFIS)对数据集训练,得到能够自适应调整时域的控制系统。最后,通过Carsim和Simulink联合仿真和实车验证。结果表明:自适应时域MPC控制器在不同工况下的轨迹跟踪精度和稳定性均得到了较大幅度的提高,且该算法具有较好的实用性。 展开更多
关键词 模型预测控制 轨迹跟踪 粒子群优化算法(PSO) 自适应神经模糊推理系统(ANFIS)
在线阅读 下载PDF
基于机器学习的雅砻江流域洪水预报研究
10
作者 何彦锋 许涵冰 +3 位作者 刘洁 周研来 陈华 郭生练 《水电能源科学》 北大核心 2025年第5期15-20,共6页
雅砻江干流水力资源丰富,流域内已形成梯级水库格局,开展流域梯级水库洪水预报对实现精细化水库调度、洪水资源高效利用具有重要意义。采用自适应模糊推理系统(ANFIS)、长短期记忆神经网络(LSTM)和时域卷积网络(TCN)建立洪水预报模型。... 雅砻江干流水力资源丰富,流域内已形成梯级水库格局,开展流域梯级水库洪水预报对实现精细化水库调度、洪水资源高效利用具有重要意义。采用自适应模糊推理系统(ANFIS)、长短期记忆神经网络(LSTM)和时域卷积网络(TCN)建立洪水预报模型。研究结果表明,相较ANFIS,TCN的纳什效率系数改善率最高为17.47%(二滩,t+12),LSTM的纳什效率系数改善率最高为15.44%(桐子林,t+12)。TCN和LSTM对两河口水库入库洪水预报整体上能达到甲等精度。与ANFIS和LSTM相比,TCN在洪峰误差和峰现时差方面表现最优,有效克服了时滞和误差累计的影响,显著降低了系统误差。结果表明,构建的TCN模型能够提高洪水预报准确性和可靠性。 展开更多
关键词 雅砻江流域 洪水预报 自适应模糊推理系统 长短期记忆神经网络 时域卷积网络
原文传递
基于风险分析和模糊专家系统的电力工程应急成本估算方法 被引量:1
11
作者 陈铭 梅诗妍 《沈阳工业大学学报》 北大核心 2025年第3期281-287,共7页
【目的】电力工程因施工周期长,易受多种不确定因素影响,可能导致成本大幅增加。因此,合理估算应急成本对工程管理至关重要。然而,传统基于经验的方法误差较大,难以适应复杂的工程环境。基于模糊专家系统和机器学习的方法在性能上虽有... 【目的】电力工程因施工周期长,易受多种不确定因素影响,可能导致成本大幅增加。因此,合理估算应急成本对工程管理至关重要。然而,传统基于经验的方法误差较大,难以适应复杂的工程环境。基于模糊专家系统和机器学习的方法在性能上虽有所改进,但仍存在参数优化难、过拟合严重等问题。为此,提出了一种应急成本估算新方法,通过结合自适应网络模糊推理系统处理不确定性问题的优势,并引入主成分分析模块缓解过拟合问题,进而提高预测精度。【方法】提出了一种结合风险分析和自适应网络的模糊推理系统的应急成本估算方法,通过分析影响电力工程成本的13个风险因素,建立了应急成本与风险因素之间的关系模型;利用模糊逻辑处理不确定性问题,引入了自适应网络模糊推理系统。自适应网络模糊推理系统通过模糊化输入变量并利用神经网络进行推理,避免了传统模糊专家系统对模糊规则库的依赖。为进一步提高预测精度,在自适应网络模糊推理系统中引入了主成分分析模块,通过降维减少冗余信息,缓解了其在小数据集上可能出现的过拟合问题。【结果】实验选取210条电力工程应急成本数据,随机选取80%作为训练集、20%作为测试集,对比4种方法的性能:基于Mamdani模糊推理的方法、基于支持向量机的方法、基于自适应网络模糊推理系统的方法和基于改进型自适应网络模糊推理系统的方法。实验结果表明:对比两种现有方法,基于自适应网络模糊推理系统的方法在训练集上表现优异,但在测试集上过拟合严重;引入主成分分析模块后,基于改进型自适应网络模糊推理系统的方法在测试集上的表现明显更优、泛化能力更强且收敛速度更快。【结论】基于改进型自适应网络模糊推理系统的应急成本估算方法结合了模糊推理和神经网络的优势,提高了对电力工程应急成本的预测精度。主要创新点为:提出了一种应急成本估算方法,结合了模糊逻辑和神经网络的优势,能够有效处理不确定性问题;在自适应网络模糊推理系统中引入了主成分分析模块,通过降维减少了冗余信息,有效避免了模型过拟合问题,提高了其泛化能力。该方法可为电力工程预算管理提供智能化解决方案,也可推广至其他不确定性成本预测领域。 展开更多
关键词 应急成本 风险因素 模糊专家系统 模糊推理 自适应网络 主成分分析方法 过拟合 收敛速度
在线阅读 下载PDF
基于ANFIS的射频消融温度控制方法研究
12
作者 张之帅 南群 《计算机仿真》 2025年第9期574-579,共6页
针对射频消融温度控制系统中存在的非线性、时变性和滞后性特点,将自适应神经网络模糊推理系统(Adaptive-Network-based Fuzzy Inference Systems, ANFIS)应用于射频电极温度控制,并探讨其控制效果。通过MATLAB构建射频电极温度控制系... 针对射频消融温度控制系统中存在的非线性、时变性和滞后性特点,将自适应神经网络模糊推理系统(Adaptive-Network-based Fuzzy Inference Systems, ANFIS)应用于射频电极温度控制,并探讨其控制效果。通过MATLAB构建射频电极温度控制系统模型,对ANFIS、PID和Fuzzy-PID三种控制在模拟实际使用、目标温度从初始55℃变化至60℃、加热到20-24s之间加入±1℃干扰等三种不同条件下,进行仿真比较。仿真结果表明,相较于PID和Fuzzy-PID,ANFIS在射频电极温度控制中具有更好的响应速度和抗干扰能力,在面对复杂的温度变化和外部干扰时,ANFIS能够更加精准地调节温度,使其稳定到达目标温度。 展开更多
关键词 射频消融 温度控制 自适应神经网络模糊推理系统
在线阅读 下载PDF
电子液压复合制动系统的双馈压力控制策略研究
13
作者 王国春 吴光庆 +2 位作者 孙有平 营江澎 陈鹏宇 《制造业自动化》 2025年第7期79-90,共12页
电子液压复合制动系统作为现阶段车辆线控底盘总成中最为重要的主动安全系统,其压力控制精度与系统可靠性的高低将直接决定新能源汽车与智能驾驶汽车的底盘控制能力以及驾驶安全性的优劣。因此,为进一步提高电子液压复合制动系统的响应... 电子液压复合制动系统作为现阶段车辆线控底盘总成中最为重要的主动安全系统,其压力控制精度与系统可靠性的高低将直接决定新能源汽车与智能驾驶汽车的底盘控制能力以及驾驶安全性的优劣。因此,为进一步提高电子液压复合制动系统的响应速度与系统可靠性,基于ANFIS算法与制动主缸P-V特性提出了活塞位移前馈控制策略,进一步提高系统响应速度的同时在一定程度上降低了控制系统对于压力传感器的依赖程度。与此同时,为保证电子液压复合制动系统压力控制精度与系统鲁棒性,基于模糊PID控制算法提出了主缸压力反馈控制策略,进一步提高了其压力跟踪控制精度。最终通过Simulink-AMESim联合仿真的形式对所提出控制策略的性能进行了验证。 展开更多
关键词 电子液压复合制动系统 主缸P-V特性 模糊自适应神经网络 模糊PID 压力跟踪控制
在线阅读 下载PDF
基于ANFIS-MBTI的人格类型指标自动检测方法
14
作者 刘昱昕 张延华 《高技术通讯》 北大核心 2025年第7期734-745,共12页
迈尔斯-布里格斯人格类型指标分类(Myers-Briggs type indicator,MBTI)测验被认为是预测人格类型最热门和最可靠的方法之一,但传统的问卷调查或专业人士咨询的检测方式在实施过程中面临着高昂的人力和时间成本以及潜在的隐私泄露风险。... 迈尔斯-布里格斯人格类型指标分类(Myers-Briggs type indicator,MBTI)测验被认为是预测人格类型最热门和最可靠的方法之一,但传统的问卷调查或专业人士咨询的检测方式在实施过程中面临着高昂的人力和时间成本以及潜在的隐私泄露风险。针对这类问题,本文提出一种基于自适应神经模糊推理系统(adaptive-network-based fuzzy inference system,ANFIS)的MBTI模型(ANFIS-MBTI)。该模型将深度神经网络与模糊逻辑推理有机融合,使其能够通过自学习和参数优化策略,灵活适应并精准捕捉社交文本数据中隐含的非线性、模糊和不确定性特征,自动识别出分析社交媒体数据集中的用户行为模式,从而揭示其在信息获取、决策制定及行为方式等方面的心理特质和性格特点。实验结果表明,本文构建的ANFIS-MBTI模型能够高效而准确地从社交文本中挖掘出16种不同的MBTI人格类型,其多层级特征融合机制使人格分类任务的自动化程度显著提升;同时通过模糊规则约束有效控制人工干预需求与数据隐私风险,为大规模在线人格分析提供了具有可扩展性的创新技术路径。 展开更多
关键词 迈尔斯-布里格斯人格类型指标分类 机器学习 自适应神经模糊推理系统 模糊逻辑
在线阅读 下载PDF
基于多元信息融合的风电功率预测模型研究
15
作者 董鹏辉 崔世文 +2 位作者 苏正雄 张齐 郭彦飞 《微型电脑应用》 2025年第2期153-156,共4页
随着风力发电的并网规模越来越大,风电功率的准确预测对风电的优化控制和电力系统的安全经济运行至关重要,但风电功率值为典型的随机变量,它具有很强的间歇性和波动性。针对风电功率难于准确预测的问题,提出基于多元信息融合的风电功率... 随着风力发电的并网规模越来越大,风电功率的准确预测对风电的优化控制和电力系统的安全经济运行至关重要,但风电功率值为典型的随机变量,它具有很强的间歇性和波动性。针对风电功率难于准确预测的问题,提出基于多元信息融合的风电功率预测模型,利用滑动平均法对原始风电场和相邻风电场的功率时间序列进行分解后,结合物理数值天气预报(NWP)预测的数据构成多元信息,并运用快速相关过滤(FCBF)算法对输入特征量进行筛选,再由自适应模糊神经网络实现特征量与风电功率的非线性映射。通过风电功率预测算例的比较分析,结果验证了所提风电功率预测模型的有效性和优越性。 展开更多
关键词 风电功率预测 多元信息融合 快速相关过滤法 滑动平均法 自适应模糊神经网络
在线阅读 下载PDF
基于人工智能的道路照明测量方法
16
作者 江志斌 《灯与照明》 2025年第6期41-43,共3页
目前主要是通过使用手持式亮度计来进行点测量,这种方法需要花费大量的人力物力和时间。本研究使用相机拍取道路照片,并确定测量点,通过道路照明测量软件,利用人工智能技术中的人工神经网络、模糊逻辑和自适应神经模糊推理系统的方法建... 目前主要是通过使用手持式亮度计来进行点测量,这种方法需要花费大量的人力物力和时间。本研究使用相机拍取道路照片,并确定测量点,通过道路照明测量软件,利用人工智能技术中的人工神经网络、模糊逻辑和自适应神经模糊推理系统的方法建立测量点的亮度值与像素值之间的相关性。利用采集的道路照片来确定道路的亮度,并通过测量数据来比较三种人工智能技术的准确性。研究表明基于人工智能技术的道路照明测量方法操作简单,可以节省大量的时间和金钱。 展开更多
关键词 道路照明测量 人工智能技术 人工神经网络 模糊逻辑 自适应神经模糊推理系统
在线阅读 下载PDF
Navigation of Non-holonomic Mobile Robot Using Neuro-fuzzy Logic with Integrated Safe Boundary Algorithm 被引量:4
17
作者 A. Mallikarjuna Rao K. Ramji +2 位作者 B.S.K. Sundara Siva Rao V. Vasua C. Puneeth 《International Journal of Automation and computing》 EI CSCD 2017年第3期285-294,共10页
In the present work, autonomous mobile robot(AMR) system is intended with basic behaviour, one is obstacle avoidance and the other is target seeking in various environments. The AMR is navigated using fuzzy logic, n... In the present work, autonomous mobile robot(AMR) system is intended with basic behaviour, one is obstacle avoidance and the other is target seeking in various environments. The AMR is navigated using fuzzy logic, neural network and adaptive neurofuzzy inference system(ANFIS) controller with safe boundary algorithm. In this method of target seeking behaviour, the obstacle avoidance at every instant improves the performance of robot in navigation approach. The inputs to the controller are the signals from various sensors fixed at front face, left and right face of the AMR. The output signal from controller regulates the angular velocity of both front power wheels of the AMR. The shortest path is identified using fuzzy, neural network and ANFIS techniques with integrated safe boundary algorithm and the predicted results are validated with experimentation. The experimental result has proven that ANFIS with safe boundary algorithm yields better performance in navigation, in particular with curved/irregular obstacles. 展开更多
关键词 Robotics autonomous mobile robot(AMR) navigation fuzzy logic neural networks adaptive neuro-fuzzy inference system(ANFIS) safe boundary algorithm
原文传递
Diagnosis of Neem Leaf Diseases Using Fuzzy-HOBINM and ANFIS Algorithms
18
作者 K.K.Thyagharajan I.Kiruba Raji 《Computers, Materials & Continua》 SCIE EI 2021年第11期2061-2076,共16页
This paper proposes an approach to detecting diseases in neem leaf that uses a Fuzzy-Higher Order Biologically Inspired Neuron Model(F-HOBINM)and adaptive neuro classifier(ANFIS).India exports USD 0.28-million worth o... This paper proposes an approach to detecting diseases in neem leaf that uses a Fuzzy-Higher Order Biologically Inspired Neuron Model(F-HOBINM)and adaptive neuro classifier(ANFIS).India exports USD 0.28-million worth of neem leaf to the UK,USA,UAE,and Europe in the form of dried leaves and powder,both of which help reduce diabetesrelated issues,cardiovascular problems,and eye disorders.Diagnosing neem leaf disease is difficult through visual interpretation,owing to similarity in their color and texture patterns.The most common diseases include bacterial blight,Colletotrichum and Alternaria leaf spot,blight,damping-off,powdery mildew,Pseudocercospora leaf spot,leaf web blight,and seedling wilt.However,traditional color and texture algorithms fail to identify leaf diseases due to irregular lumps and surfaces,and rough ridges,as the classification time involved takes as long as a week.The proposed F-HOBINM algorithm recognizes the leaf intensity through the leaky capacitor,and uses subjective intensity and physical stimulus to interpret the diagnosis.Further,the processed leaf images from the HOBINM algorithm are applied to the ANFIS classifier to identify neem leaf diseases.The experimental results show 92.18%accuracy from a database of 1,462 neem leaves. 展开更多
关键词 Higher-order neural network fuzzy c-means clustering Mamdani fuzzy inference system adaptive neuro-fuzzy classifier
在线阅读 下载PDF
Nonlinear Modeling and Neuro-Fuzzy Control of PEMFC
19
作者 孙涛 卫东 +1 位作者 曹广益 朱新坚 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第3期274-279,共6页
The proton exchange membrane generation technology is highly efficient, and clea n and is considered as the most hopeful “green” power technology. The operatin g principles of proton exchange membrane fuel cell (PEM... The proton exchange membrane generation technology is highly efficient, and clea n and is considered as the most hopeful “green” power technology. The operatin g principles of proton exchange membrane fuel cell (PEMFC) system involve thermody namics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematic al model and control online. This paper analyzed the characters of the PEMFC; an d used the approach and self-study ability of artificial neural networks to bui ld the model of nonlinear system, and adopted the adaptive neural-networks fuzz y infer system to build the temperature model of PEMFC which is used as the refe rence model of the control system, and adjusted the model parameters to control online. The model and control were implemented in SIMULINK environment. The resu lts of simulation show the test data and model have a good agreement. The model is useful for the optimal and real time control of PEMFC system. 展开更多
关键词 proton exchange membrane fuel cell (PEMFC) adaptive neural-networks fuzzy infer system(ANFIS) MODELING neural network
在线阅读 下载PDF
应对零日攻击的混合车联网入侵检测系统 被引量:2
20
作者 方介泼 陶重犇 《计算机应用》 CSCD 北大核心 2024年第9期2763-2769,共7页
现有机器学习方法在面对零日攻击检测时,存在对样本数据过度依赖以及对异常数据不敏感的问题,从而导致入侵检测系统(IDS)难以有效防御零日攻击。因此,提出一种基于Transformer和自适应模糊神经网络推理系统(ANFIS)的混合车联网入侵检测... 现有机器学习方法在面对零日攻击检测时,存在对样本数据过度依赖以及对异常数据不敏感的问题,从而导致入侵检测系统(IDS)难以有效防御零日攻击。因此,提出一种基于Transformer和自适应模糊神经网络推理系统(ANFIS)的混合车联网入侵检测系统。首先,设计了一种数据增强算法,通过先去除噪声再生成的方法解决了数据样本不平衡的问题;其次,将非线性特征交互引入复杂的特征组合,设计了一个特征工程模块;最后,将Transformer的自注意力机制和ANFIS的自适应学习方法相结合,以提高特征表征能力,减少对样本数据的依赖。在CICIDS-2017和UNSW-NB15入侵数据集上将所提系统与Dual-IDS等先进(SOTA)算法进行比较。实验结果表明,对于零日攻击,所提系统在CICIDS-2017入侵数据集上实现了98.64%的检测精确率和98.31%的F1值,在UNSW-NB15入侵数据集上实现了93.07%的检测精确率和92.43%的F1值,验证了所提算法在零日攻击检测方面的高准确性和强泛化能力。 展开更多
关键词 车联网 入侵检测 零日攻击 TRANSFORMER 自适应模糊神经网络推理系统
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部