期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
An improved neighbourhood-based contrast limited adaptive histogram equalization method for contrast enhancement on retinal images
1
作者 Arjuna Arulraj Jeya Sutha Mariadhason Reena Rose Ronjalis 《International Journal of Ophthalmology(English edition)》 2025年第12期2225-2236,共12页
AIM:To find the effective contrast enhancement method on retinal images for effective segmentation of retinal features.METHODS:A novel image preprocessing method that used neighbourhood-based improved contrast limited... AIM:To find the effective contrast enhancement method on retinal images for effective segmentation of retinal features.METHODS:A novel image preprocessing method that used neighbourhood-based improved contrast limited adaptive histogram equalization(NICLAHE)to improve retinal image contrast was suggested to aid in the accurate identification of retinal disorders and improve the visibility of fine retinal structures.Additionally,a minimal-order filter was applied to effectively denoise the images without compromising important retinal structures.The novel NICLAHE algorithm was inspired by the classical CLAHE algorithm,but enhanced it by selecting the clip limits and tile sized in a dynamical manner relative to the pixel values in an image as opposed to using fixed values.It was evaluated on the Drive and high-resolution fundus(HRF)datasets on conventional quality measures.RESULTS:The new proposed preprocessing technique was applied to two retinal image databases,Drive and HRF,with four quality metrics being,root mean square error(RMSE),peak signal to noise ratio(PSNR),root mean square contrast(RMSC),and overall contrast.The technique performed superiorly on both the data sets as compared to the traditional enhancement methods.In order to assess the compatibility of the method with automated diagnosis,a deep learning framework named ResNet was applied in the segmentation of retinal blood vessels.Sensitivity,specificity,precision and accuracy were used to analyse the performance.NICLAHE–enhanced images outperformed the traditional techniques on both the datasets with improved accuracy.CONCLUSION:NICLAHE provides better results than traditional methods with less error and improved contrastrelated values.These enhanced images are subsequently measured by sensitivity,specificity,precision,and accuracy,which yield a better result in both datasets. 展开更多
关键词 contrast limited adaptive histogram equalization retinal imaging image preprocessing contrast enhancement
原文传递
Enhanced pneumonia detection:leveraging CLAHE in a mobile application
2
作者 Wilny Wilson P J D Dorathi Jayaseeli 《Biomedical Engineering Communications》 2025年第4期18-35,共18页
Background:Pneumonia remains a critical global health challenge,manifesting as a severe respiratory infection caused by viruses,bacteria,and fungi.Early detection is paramount for effective treatment,potentially reduc... Background:Pneumonia remains a critical global health challenge,manifesting as a severe respiratory infection caused by viruses,bacteria,and fungi.Early detection is paramount for effective treatment,potentially reducing mortality rates and optimizing healthcare resource allocation.Despite the importance of chest X-ray diagnosis,image analysis presents significant challenges,particularly in regions with limited medical expertise.This study addresses these challenges by proposing a computer-aided diagnosis system leveraging targeted image preprocessing and optimized deep learning techniques.Methods:We systematically evaluated contrast limited adaptive histogram equalization with varying clip limits for preprocessing chest X-ray images,demonstrating its effectiveness in enhancing feature visibility for diagnostic accuracy.Employing a comprehensive dataset of 5,863 X-ray images(1,583 pneumonia-negative,4,280 pneumonia-positive)collected from multiple healthcare facilities,we conducted a comparative analysis of transfer learning with pre-trained models including ResNet50v2,VGG-19,and MobileNetV2.Statistical validation was performed through 5-fold cross-validation.Results:Our results show that the contrast limited adaptive histogram equalization-enhanced approach with ResNet50v2 achieves 93.40%accuracy,outperforming VGG-19(84.90%)and MobileNetV2(89.70%).Statistical validation confirms the significance of these improvements(P<0.01).The development and optimization resulted in a lightweight mobile application(74 KB)providing rapid diagnostic support(1-2 s response time).Conclusion:The proposed approach demonstrates practical applicability in resource-constrained settings,balancing diagnostic accuracy with deployment efficiency,and offers a viable solution for computer-aided pneumonia diagnosis in areas with limited medical expertise. 展开更多
关键词 PNEUMONIA contrast limited adaptive histogram equalization deep learning mobile application chest X-ray transfer learning
在线阅读 下载PDF
A Hybrid Deep Learning Multi-Class Classification Model for Alzheimer’s Disease Using Enhanced MRI Images
3
作者 Ghadah Naif Alwakid 《Computers, Materials & Continua》 2026年第1期797-821,共25页
Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often stru... Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice. 展开更多
关键词 Alzheimer’s disease deep learning MRI images MobileNetV2 contrast-limited adaptive histogram equalization(CLAHE) enhanced super-resolution generative adversarial networks(ESRGAN) multi-class classification
在线阅读 下载PDF
Low-light image enhancement based on multi-illumination estimation and multi-scale fusion
4
作者 ZHANG Xin'ai GAO Jing +1 位作者 NIE Kaiming LUO Tao 《Optoelectronics Letters》 2025年第6期362-369,共8页
To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illuminat... To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illumination is processed by contrast-limited adaptive histogram equalization(CLAHE),adaptive complementary gamma function(ACG),and adaptive detail preserving S-curve(ADPS),respectively,to obtain three components.Then,the fusion-relevant features,exposure,and color contrast are selected as the weight maps.Subsequently,these components and weight maps are fused through multi-scale to generate enhanced illumination.Finally,the enhanced images are obtained by multiplying the enhanced illumination and reflectance.Compared with existing approaches,this proposed method achieves an average increase of 0.81%and 2.89%in the structural similarity index measurement(SSIM)and peak signal-to-noise ratio(PSNR),and a decrease of 6.17%and 32.61%in the natural image quality evaluator(NIQE)and gradient magnitude similarity deviation(GMSD),respectively. 展开更多
关键词 adaptive detail preserving s curve contrast limited adaptive histogram equalization adaptive complementary gamma function low light image enhancement equalization clahe adaptive complementary gamma function acg multi scale fusion weight maps multi illumination estimation
原文传递
Alzheimer’s Disease Stage Classification Using a Deep Transfer Learning and Sparse Auto Encoder Method 被引量:1
5
作者 Deepthi K.Oommen J.Arunnehru 《Computers, Materials & Continua》 SCIE EI 2023年第7期793-811,共19页
Alzheimer’s Disease(AD)is a progressive neurological disease.Early diagnosis of this illness using conventional methods is very challenging.Deep Learning(DL)is one of the finest solutions for improving diagnostic pro... Alzheimer’s Disease(AD)is a progressive neurological disease.Early diagnosis of this illness using conventional methods is very challenging.Deep Learning(DL)is one of the finest solutions for improving diagnostic procedures’performance and forecast accuracy.The disease’s widespread distribution and elevated mortality rate demonstrate its significance in the older-onset and younger-onset age groups.In light of research investigations,it is vital to consider age as one of the key criteria when choosing the subjects.The younger subjects are more susceptible to the perishable side than the older onset.The proposed investigation concentrated on the younger onset.The research used deep learning models and neuroimages to diagnose and categorize the disease at its early stages automatically.The proposed work is executed in three steps.The 3D input images must first undergo image pre-processing using Weiner filtering and Contrast Limited Adaptive Histogram Equalization(CLAHE)methods.The Transfer Learning(TL)models extract features,which are subsequently compressed using cascaded Auto Encoders(AE).The final phase entails using a Deep Neural Network(DNN)to classify the phases of AD.The model was trained and tested to classify the five stages of AD.The ensemble ResNet-18 and sparse autoencoder with DNN model achieved an accuracy of 98.54%.The method is compared to state-of-the-art approaches to validate its efficacy and performance. 展开更多
关键词 Alzheimer’s disease mild cognitive impairment Weiner filter contrast limited adaptive histogram equalization transfer learning sparse autoencoder deep neural network
在线阅读 下载PDF
Ultrasound liver tumor segmentation using adaptively regularized kernel-based fuzzy C means with enhanced level set algorithm
6
作者 Deepak S.Uplaonkar Virupakshappa Nagabhushan Patil 《International Journal of Intelligent Computing and Cybernetics》 EI 2022年第3期438-453,共16页
Purpose-The purpose of this study is to develop a hybrid algorithm for segmenting tumor from ultrasound images of the liver.Design/methodology/approach-After collecting the ultrasound images,contrast-limited adaptive ... Purpose-The purpose of this study is to develop a hybrid algorithm for segmenting tumor from ultrasound images of the liver.Design/methodology/approach-After collecting the ultrasound images,contrast-limited adaptive histogram equalization approach(CLAHE)is applied as preprocessing,in order to enhance the visual quality of the images that helps in better segmentation.Then,adaptively regularized kernel-based fuzzy C means(ARKFCM)is used to segment tumor from the enhanced image along with local ternary pattern combined with selective level set approaches.Findings-The proposed segmentation algorithm precisely segments the tumor portions from the enhanced images with lower computation cost.The proposed segmentation algorithm is compared with the existing algorithms and ground truth values in terms of Jaccard coefficient,dice coefficient,precision,Matthews correlation coefficient,f-score and accuracy.The experimental analysis shows that the proposed algorithm achieved 99.18% of accuracy and 92.17% of f-score value,which is better than the existing algorithms.Practical implications-From the experimental analysis,the proposed ARKFCM with enhanced level set algorithm obtained better performance in ultrasound liver tumor segmentation related to graph-based algorithm.However,the proposed algorithm showed 3.11% improvement in dice coefficient compared to graph-based algorithm.Originality/value-The image preprocessing is carried out using CLAHE algorithm.The preprocessed image is segmented by employing selective level set model and Local Ternary Pattern in ARKFCM algorithm.In this research,the proposed algorithm has advantages such as independence of clustering parameters,robustness in preserving the image details and optimal in finding the threshold value that effectively reduces the computational cost. 展开更多
关键词 adaptively regularized kernel-based fuzzy C means Contrast-limited adaptive histogram equalization Level set algorithm Liver tumor segmentation Local ternary pattern
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部