This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling m...This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.展开更多
A moving target tracking control problem for marching tank based on adaptive robust feedback control scheme is addressed.A series of preparations is needed for tank gun before shooting a target,the purpose of this pap...A moving target tracking control problem for marching tank based on adaptive robust feedback control scheme is addressed.A series of preparations is needed for tank gun before shooting a target,the purpose of this paper is to design a control system to fulfill two requirements in this process:the turretbarrel system of tank needs to be adjusted from off-target position to command position and point to the moving target stably when there are strong uncertainties(modeling error,uncertain disturbance with unknown boundaries and road excitation) in the system.Considering the characteristic of coupled interaction,the first thing we do in this paper is to build a coupled analysis model of turret-barrel system with uncertainty term in state-space form.Second,an adaptive robust feedback control scheme is proposed by adding adaptive law to overcome the uncertainty.Third,multi-body dynamics software is used to establish the mechanical mechanism of the tank,and DC-motor module is established in SIMULINK environment,thus the target information and tracking error of the control system is collected and transferred,the gear-ball screw is derived directly by the output torque of the DC-motor module.Finally,the control system and the 3D model are combined together by means of Recur Dyn/SIMULINK co-simulation,the turret-barrel system of tank can approximately track the moving target in a certain range.With the adaptive robust feedback control,the target action is completely followed when the target location is constantly changing.展开更多
In this paper,the tracking control problem of the projectile hitting point of the moving tank is studied.First,a multi-body dy-namic model with stability systems is established.Second,the nonlinear coupling dynamic eq...In this paper,the tracking control problem of the projectile hitting point of the moving tank is studied.First,a multi-body dy-namic model with stability systems is established.Second,the nonlinear coupling dynamic equation of turret-barrel pointing system is established.Third,the trajectory equation of exterior ballistic(EB)projectile in six degree-of-freedom is established,and the pointing problem was transformed into a problem of hitting point tracking through coordinate transformation.Forth,an adaptive robust feedback control method is proposed to make the predicted hitting point tracking the expected position accurately.Finally,Chebyshev surrogate model is used to replace the EB differential equation,which effectively reduces the time required by co-simulation.This paper combines the EB process with the tracking control problem,which effectively ensures the first-round chance of hit for the tank gun.展开更多
In this paper, we investigate the stabilization of an incommensurate fractional order chaotic systems and propose a modified adaptive-feedback controller for the incommensurate fractional order chaos control based on ...In this paper, we investigate the stabilization of an incommensurate fractional order chaotic systems and propose a modified adaptive-feedback controller for the incommensurate fractional order chaos control based on the Lyapunov stability theory, the fractional order differential inequality and the adaptive control theory. The present controller, which only contains a single state variable, is simple both in design and in implementation. The simulation results for several fractional order chaotic systems are provided to illustrate the effectiveness of the proposed scheme.展开更多
This paper deals with the pinning synchronization of nonlinearly coupled complex networks with time-varying coupling delays and time-varying delays in the dynamical nodes.We control a part of the nodes of the complex ...This paper deals with the pinning synchronization of nonlinearly coupled complex networks with time-varying coupling delays and time-varying delays in the dynamical nodes.We control a part of the nodes of the complex networks by using adaptive feedback controllers and adjusting the time-varying coupling strengths.Based on the Lyapunov-Krasovskii stability theory for functional differential equations and a linear matrix inequality(LMI),some sufficient conditions for the synchronization are derived.A numerical simulation example is also provided to verify the correctness and the effectiveness of the proposed scheme.展开更多
In recent years,a variety of pneumatic soft actuators(PSAs)have been proposed due to the develop-ment of soft robots in biomimetic robots,medical devices,etc.At the same time,the modeling and control of PSAs remains a...In recent years,a variety of pneumatic soft actuators(PSAs)have been proposed due to the develop-ment of soft robots in biomimetic robots,medical devices,etc.At the same time,the modeling and control of PSAs remains an open question.In this paper,a spatial bending pneumatic soft actuator(SBPSA)modeling method based on the Prandtl-Ishlinskii(PI)model is proposed,and the inverse model is designed to compensate for hysteresis nonlinearity.Furthermore,an adaptive feedback controller combined with a hysteresis compensator is proposed for the precise control and tracking of SBPSAs.Finally,an experimental platform is built,and experimental results demonstrate the effectiveness of the proposed method for precise tracking.展开更多
文摘This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.
基金supported by the Natural Science Foundation of Jiangsu Province(Project no.BK20180474)the Natural Science Foundation of China(Project no.51805263,no.51705253,no.11572158)the National Defense Basic Scientific Research program of China(Grant no.JCKY2017208A001)。
文摘A moving target tracking control problem for marching tank based on adaptive robust feedback control scheme is addressed.A series of preparations is needed for tank gun before shooting a target,the purpose of this paper is to design a control system to fulfill two requirements in this process:the turretbarrel system of tank needs to be adjusted from off-target position to command position and point to the moving target stably when there are strong uncertainties(modeling error,uncertain disturbance with unknown boundaries and road excitation) in the system.Considering the characteristic of coupled interaction,the first thing we do in this paper is to build a coupled analysis model of turret-barrel system with uncertainty term in state-space form.Second,an adaptive robust feedback control scheme is proposed by adding adaptive law to overcome the uncertainty.Third,multi-body dynamics software is used to establish the mechanical mechanism of the tank,and DC-motor module is established in SIMULINK environment,thus the target information and tracking error of the control system is collected and transferred,the gear-ball screw is derived directly by the output torque of the DC-motor module.Finally,the control system and the 3D model are combined together by means of Recur Dyn/SIMULINK co-simulation,the turret-barrel system of tank can approximately track the moving target in a certain range.With the adaptive robust feedback control,the target action is completely followed when the target location is constantly changing.
基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20180474)the National Natural Science Foundation of China(Grant Nos.51805263,51705253,and 11572158)the Natural Science Foundation for Post-doctoral Scientists of China(Grant No.BX2021126).
文摘In this paper,the tracking control problem of the projectile hitting point of the moving tank is studied.First,a multi-body dy-namic model with stability systems is established.Second,the nonlinear coupling dynamic equation of turret-barrel pointing system is established.Third,the trajectory equation of exterior ballistic(EB)projectile in six degree-of-freedom is established,and the pointing problem was transformed into a problem of hitting point tracking through coordinate transformation.Forth,an adaptive robust feedback control method is proposed to make the predicted hitting point tracking the expected position accurately.Finally,Chebyshev surrogate model is used to replace the EB differential equation,which effectively reduces the time required by co-simulation.This paper combines the EB process with the tracking control problem,which effectively ensures the first-round chance of hit for the tank gun.
基金supported by the Natural Science Foundation of Hebei Province,China(Grant No.A2010000343)
文摘In this paper, we investigate the stabilization of an incommensurate fractional order chaotic systems and propose a modified adaptive-feedback controller for the incommensurate fractional order chaos control based on the Lyapunov stability theory, the fractional order differential inequality and the adaptive control theory. The present controller, which only contains a single state variable, is simple both in design and in implementation. The simulation results for several fractional order chaotic systems are provided to illustrate the effectiveness of the proposed scheme.
基金Project supported by the National Natural Science Foundation of China (Grant No. 70871056)the Six Talents Peak Foundation of Jiangsu Province,China (Grant No. 2010-JY70-025)
文摘This paper deals with the pinning synchronization of nonlinearly coupled complex networks with time-varying coupling delays and time-varying delays in the dynamical nodes.We control a part of the nodes of the complex networks by using adaptive feedback controllers and adjusting the time-varying coupling strengths.Based on the Lyapunov-Krasovskii stability theory for functional differential equations and a linear matrix inequality(LMI),some sufficient conditions for the synchronization are derived.A numerical simulation example is also provided to verify the correctness and the effectiveness of the proposed scheme.
基金supported in part by the National Natural Science Foundation of China(52205019 and 62373198)in part by the Fundamental Research Funds for the Central Universities(078-63243157).
文摘In recent years,a variety of pneumatic soft actuators(PSAs)have been proposed due to the develop-ment of soft robots in biomimetic robots,medical devices,etc.At the same time,the modeling and control of PSAs remains an open question.In this paper,a spatial bending pneumatic soft actuator(SBPSA)modeling method based on the Prandtl-Ishlinskii(PI)model is proposed,and the inverse model is designed to compensate for hysteresis nonlinearity.Furthermore,an adaptive feedback controller combined with a hysteresis compensator is proposed for the precise control and tracking of SBPSAs.Finally,an experimental platform is built,and experimental results demonstrate the effectiveness of the proposed method for precise tracking.