In this paper a closed-form approximated expression is proposed for the Intersymbol Interference (ISI) as a function of time valid during the entire stages of the non-blind adaptive deconvolution process and is suitab...In this paper a closed-form approximated expression is proposed for the Intersymbol Interference (ISI) as a function of time valid during the entire stages of the non-blind adaptive deconvolution process and is suitable for the noisy, real and two independent quadrature carrier input case. The obtained expression is applicable for type of channels where the resulting ISI as a function of time can be described with an exponential model having a single time constant. Based on this new expression for the ISI as a function of time, the convergence time (or number of iteration number required for convergence) of the non-blind adaptive equalizer can be calculated. Up to now, the equalizer’s performance (convergence time and ISI as a function of time) could be obtained only via simulation when the channel coefficients were known. The new proposed expression for the ISI as a function of time is based on the knowledge of the initial ISI and channel power (which is measurable) and eliminates the need to carry out any more the above mentioned simulation. Simulation results indicate a high correlation between the simulated and calculated ISI (based on our proposed expression for the ISI as a function of time) during the whole deconvolution process for the high as well as for the low signal to noise ratio (SNR) condition.展开更多
In the communication field, during transmission, a source signal undergoes a convolutive distortion between its symbols and the channel impulse response. This distortion is referred to as Intersymbol Interference (ISI...In the communication field, during transmission, a source signal undergoes a convolutive distortion between its symbols and the channel impulse response. This distortion is referred to as Intersymbol Interference (ISI) and can be reduced significantly by applying a blind adaptive deconvolution process (blind adaptive equalizer) on the distorted received symbols. But, since the entire blind deconvolution process is carried out with no training symbols and the channel’s coefficients are obviously unknown to the receiver, no actual indication can be given (via the mean square error (MSE) or ISI expression) during the deconvolution process whether the blind adaptive equalizer succeeded to remove the heavy ISI from the transmitted symbols or not. Up to now, the output of a convolution and deconvolution process was mainly investigated from the ISI point of view. In this paper, the output of a convolution and deconvolution process is inspected from the leading digit point of view. Simulation results indicate that for the 4PAM (Pulse Amplitude Modulation) and 16QAM (Quadrature Amplitude Modulation) input case, the number “1” is the leading digit at the output of a convolution and deconvolution process respectively as long as heavy ISI exists. However, this leading digit does not follow exactly Benford’s Law but follows approximately the leading digit (digit 1) of a Gaussian process for independent identically distributed input symbols and a channel with many coefficients.展开更多
A convolution model of flaw scattering echoes and an adaptive filtering deconvolution method are presented. The effect of the method is analyzed by simulating a given system. By deconvolution, the influence of the tra...A convolution model of flaw scattering echoes and an adaptive filtering deconvolution method are presented. The effect of the method is analyzed by simulating a given system. By deconvolution, the influence of the transducer on echoes is reduced greatly and the flaw features stand out more clearly in the deconvolved echoes than in flaw echoes themselves. flaw echo signals of 18 flaw samples are processed by adaptive filtering deconvolution. As a result, flaws are classified successfully展开更多
文摘In this paper a closed-form approximated expression is proposed for the Intersymbol Interference (ISI) as a function of time valid during the entire stages of the non-blind adaptive deconvolution process and is suitable for the noisy, real and two independent quadrature carrier input case. The obtained expression is applicable for type of channels where the resulting ISI as a function of time can be described with an exponential model having a single time constant. Based on this new expression for the ISI as a function of time, the convergence time (or number of iteration number required for convergence) of the non-blind adaptive equalizer can be calculated. Up to now, the equalizer’s performance (convergence time and ISI as a function of time) could be obtained only via simulation when the channel coefficients were known. The new proposed expression for the ISI as a function of time is based on the knowledge of the initial ISI and channel power (which is measurable) and eliminates the need to carry out any more the above mentioned simulation. Simulation results indicate a high correlation between the simulated and calculated ISI (based on our proposed expression for the ISI as a function of time) during the whole deconvolution process for the high as well as for the low signal to noise ratio (SNR) condition.
文摘In the communication field, during transmission, a source signal undergoes a convolutive distortion between its symbols and the channel impulse response. This distortion is referred to as Intersymbol Interference (ISI) and can be reduced significantly by applying a blind adaptive deconvolution process (blind adaptive equalizer) on the distorted received symbols. But, since the entire blind deconvolution process is carried out with no training symbols and the channel’s coefficients are obviously unknown to the receiver, no actual indication can be given (via the mean square error (MSE) or ISI expression) during the deconvolution process whether the blind adaptive equalizer succeeded to remove the heavy ISI from the transmitted symbols or not. Up to now, the output of a convolution and deconvolution process was mainly investigated from the ISI point of view. In this paper, the output of a convolution and deconvolution process is inspected from the leading digit point of view. Simulation results indicate that for the 4PAM (Pulse Amplitude Modulation) and 16QAM (Quadrature Amplitude Modulation) input case, the number “1” is the leading digit at the output of a convolution and deconvolution process respectively as long as heavy ISI exists. However, this leading digit does not follow exactly Benford’s Law but follows approximately the leading digit (digit 1) of a Gaussian process for independent identically distributed input symbols and a channel with many coefficients.
文摘A convolution model of flaw scattering echoes and an adaptive filtering deconvolution method are presented. The effect of the method is analyzed by simulating a given system. By deconvolution, the influence of the transducer on echoes is reduced greatly and the flaw features stand out more clearly in the deconvolved echoes than in flaw echoes themselves. flaw echo signals of 18 flaw samples are processed by adaptive filtering deconvolution. As a result, flaws are classified successfully