To analyze main factors affecting the separation reliability between a missile and adapters for the launching process, a six DOF underwater dynamic model for the missile and adapters is utilized to simulate the separa...To analyze main factors affecting the separation reliability between a missile and adapters for the launching process, a six DOF underwater dynamic model for the missile and adapters is utilized to simulate the separation process, considering elastic forces of separating springs, hydrodynamic forces, gravity and buoyancy. Moreover, a criterion based on the maximum separating distance is put forward to determine whether adapters separate with the missile reliably. The results show that the magnitude and position of elastic force, the wedge angle and mass of the adapter significantly affect the separating process. The local sensitivity analysis for the reference status of design parameters demonstrates that the wedge angle of adapters has the maximum influence about 70. 4% on the separating distance.展开更多
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op...In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.展开更多
ren xing韧性Resilience This term indicates psychological flexibility and the strength to face and endure pressure,and the wisdom to adapt to and keep moving on in the current dynamic environment.
Rheumatoid arthritis(RA)patients face significant psychological challenges alongside physical symptoms,necessitating a comprehensive understanding of how psychological vulnerability and adaptation patterns evolve thro...Rheumatoid arthritis(RA)patients face significant psychological challenges alongside physical symptoms,necessitating a comprehensive understanding of how psychological vulnerability and adaptation patterns evolve throughout the disease course.This review examined 95 studies(2000-2025)from PubMed,Web of Science,and CNKI databases including longitudinal cohorts,randomized controlled trials,and mixed-methods research,to characterize the complex interplay between biological,psychological,and social factors affecting RA patients’mental health.Findings revealed three distinct vulnerability trajectories(45%persistently low,30%fluctuating improvement,25%persistently high)and four adaptation stages,with critical intervention periods occurring 3-6 months postdiagnosis and during disease flares.Multiple factors significantly influence psychological outcomes,including gender(females showing 1.8-fold increased risk),age(younger patients experiencing 42%higher vulnerability),pain intensity,inflammatory markers,and neuroendocrine dysregulation(48%showing cortisol rhythm disruption).Early psychological intervention(within 3 months of diagnosis)demonstrated robust benefits,reducing depression incidence by 42%with effects persisting 24-36 months,while different modalities showed complementary advantages:Cognitive behavioral therapy for depression(Cohen’s d=0.68),mindfulness for pain acceptance(38%improvement),and peer support for meaning reconstruction(25.6%increase).These findings underscore the importance of integrating routine psychological assessment into standard RA care,developing stage-appropriate interventions,and advancing research toward personalized biopsychosocial approaches that address the dynamic psychological dimensions of the disease.展开更多
With the increasing integration of renewable energy,microgrids are increasingly facing stability challenges,primarily due to the lack of inherent inertia in inverter-dominated systems,which is traditionally provided b...With the increasing integration of renewable energy,microgrids are increasingly facing stability challenges,primarily due to the lack of inherent inertia in inverter-dominated systems,which is traditionally provided by synchronous generators.To address this critical issue,Virtual Synchronous Generator(VSG)technology has emerged as a highly promising solution by emulating the inertia and damping characteristics of conventional synchronous generators.To enhance the operational efficiency of virtual synchronous generators(VSGs),this study employs smallsignal modeling analysis,root locus methods,and synchronous generator power-angle characteristic analysis to comprehensively evaluate how virtual inertia and damping coefficients affect frequency stability and power output during transient processes.Based on these analyses,an adaptive control strategy is proposed:increasing the virtual inertia when the rotor angular velocity undergoes rapid changes,while strengthening the damping coefficient when the speed deviation exceeds a certain threshold to suppress angular velocity oscillations.To validate the effectiveness of the proposed method,a grid-connected VSG simulation platform was developed inMATLAB/Simulink.Comparative simulations demonstrate that the proposed adaptive control strategy outperforms conventional VSGmethods by significantly reducing grid frequency deviations and shortening active power response time during active power command changes and load disturbances.This approach enhances microgrid stability and dynamic performance,confirming its viability for renewable-dominant power systems.Future work should focus on experimental validation and real-world parameter optimization,while further exploring the strategy’s effectiveness in improvingVSG low-voltage ride-through(LVRT)capability and power-sharing applications in multi-parallel configurations.展开更多
While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance re...While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance remains underexplored in field investigations.To evaluate the practical applicability of this emerging technique in adverse shallow sea channels,a field experiment was conducted using three communication modes:orthogonal frequency division multiplexing(OFDM),M-ary frequency-shift keying(MFSK),and direct sequence spread spectrum(DSSS)for reinforcement learning-driven adaptive modulation.Specifically,a Q-learning method is used to select the optimal modulation mode according to the channel quality quantified by signal-to-noise ratio,multipath spread length,and Doppler frequency offset.Experimental results demonstrate that the reinforcement learning-based adaptive modulation scheme outperformed fixed threshold detection in terms of total throughput and average bit error rate,surpassing conventional adaptive modulation strategies.展开更多
In underwater target search path planning,the accuracy of sonar models directly dictates the accurate assessment of search coverage.In contrast to physics-informed sonar models,traditional geometric sonar models fail ...In underwater target search path planning,the accuracy of sonar models directly dictates the accurate assessment of search coverage.In contrast to physics-informed sonar models,traditional geometric sonar models fail to accurately characterize the complex influence of marine environments.To overcome these challenges,we propose an acoustic physics-informed intelligent path planning framework for underwater target search,integrating three core modules:The acoustic-physical modeling module adopts 3D ray-tracing theory and the active sonar equation to construct a physics-driven sonar detection model,explicitly accounting for environmental factors that influence sonar performance across heterogeneous spaces.The hybrid parallel computing module adopts a message passing interface(MPI)/open multi-processing(Open MP)hybrid strategy for large-scale acoustic simulations,combining computational domain decomposition and physics-intensive task acceleration.The search path optimization module adopts the covariance matrix adaptation evolution algorithm to solve continuous optimization problems of heading angles,which ensures maximum search coverage for targets.Largescale experiments conducted in the Pacific and Atlantic Oceans demonstrate the framework's effectiveness:(1)Precise capture of sonar detection range variations from 5.45 km to 50 km in heterogeneous marine environments.(2)Significant speedup of 453.43×for acoustic physics modeling through hybrid parallelization.(3)Notable improvements of 7.23%in detection coverage and 15.86%reduction in optimization time compared to the optimal baseline method.The framework provides a robust solution for underwater search missions in complex marine environments.展开更多
Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often stru...Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice.展开更多
四川大学计算机学院学生团队在大规模语言模型参数高效微调系统研究方向取得重要进展,其研究成果“mLoRA:Fine-Tuning LoRA Adapters via Highly-Efficient Pipeline Parallelism in Multiple GPUs”在国际数据库学术会议VLDB 2025 Rese...四川大学计算机学院学生团队在大规模语言模型参数高效微调系统研究方向取得重要进展,其研究成果“mLoRA:Fine-Tuning LoRA Adapters via Highly-Efficient Pipeline Parallelism in Multiple GPUs”在国际数据库学术会议VLDB 2025 Research Track正式发表。VLDB(International Conference on Very Large Data Bases)是数据库领域的重要国际学术会议之一,涵盖数据库管理系统、数据密集型系统与大规模数据处理等方向。该工作已在多个国内外互联网企业的实际生产环境中部署应用,并获得一项中国发明专利和一项美国发明专利的受理。展开更多
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
A better understanding of the structure and dynamics of disturbed forests is key for forecasting their future successional trajectories.Despite vulnerability of subalpine forests to warming climate,little is known as ...A better understanding of the structure and dynamics of disturbed forests is key for forecasting their future successional trajectories.Despite vulnerability of subalpine forests to warming climate,little is known as to how their community composition has responded to disturbances and climate warming over decades.Before the 1970s,subalpine forests on the southeastern Qinghai-Tibet Plateau mainly experienced logging and fire,but afterwards they were more impacted by climate warming.Thus,they provide an excellent setting to test whether disturbances and climate warming led to changes in forest structure.Based on the analysis of 3145 forest inventory plots at 4-to 5-year resolution,we found that spruce-fir forests shifted to pine and broadleaved forests since the early 1970s.Such a turnover in species composition mainly occurred in the 1994e1998 period.By strongly altering site conditions,disturbances in concert with climate warming reshuffle community composition to warm-adapted broadleaf-pine species.Thus,moderate disturbances shifted forest composition through a gradual loss of resilience of spruce-fir forests.Shifts in these foundation species will have profound impacts on ecosystem functions and services.In the future,broadleaved forests could expand more rapidly than evergreen needle-leaved forests under moderate warming scenarios.In addition to climate,the effects of anthropogenic disturbances on subalpine forests should be considered in adaptive forest management and in projections of future forest changes.展开更多
Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In th...Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In the project,we evaluated novel approaches integrating adaptive management,technological innovations,and community-based action towards more efficient sustainable conservation results and ecosystem resilience.The multi-site experimental design was based on comparison between conventional reserve management and novel integrative models implemented in diverse ecological zones.Data were collected over a period of three years employing remote sensing technologies,in situ biodiversity assessments,and large socioeconomic surveys.These instruments enabled a robust and multi-dimensional measurement of variables such as species diversity,ecological resilience,community engagement,and stakeholder engagement.The results indicate that adaptive strategies significantly enhance real-time decision-making abilities and enhance long-term ecosystem resilience.Further,technology-driven monitoring greatly enhances data accuracy,responsiveness,and early warning capabilities.Besides that,community-based conservation initiatives were found to be pivotal in facilitating local stewardship,enhancing participatory governance,and enabling more adaptive and adaptive policy systems.This research rejects mainstream conservation paradigms by placing importance on flexibility,interdisciplinarity,and inclusivity of governance systems in effectively mitigating the impacts of climate change and loss of biodiversity.Our findings offer strong evidence that emerging paradigms of conservation can provide greater ecological and social sustainability than traditional methods.These results support the need for a paradigm shift towards conservation strategies that are dynamic,collaborative,and technologically integrated,with significant implications for policy formulation as well as operational environmental management.展开更多
目的探讨在急性缺血性脑卒中患者中应用直接抽吸一次性取栓(A direct aspiration First-Pass thrombectomy,ADAPT)进行血管再通的安全性、可行性及技术优势。方法回顾性分析本院神经内科2021年3月至2023年10月接受血管再通术治疗的54例...目的探讨在急性缺血性脑卒中患者中应用直接抽吸一次性取栓(A direct aspiration First-Pass thrombectomy,ADAPT)进行血管再通的安全性、可行性及技术优势。方法回顾性分析本院神经内科2021年3月至2023年10月接受血管再通术治疗的54例急性脑卒中患者。根据取栓技术的不同,患者被分为研究组(应用ADAPT技术直接抽吸取栓,34例)和对照组[应用Solitaire FR支架机械取栓术(Solitaire FR with intracranial support catheter for mechanical thrombectomy,SWIM),20例]。比较两组的取栓次数、手术操作时间、血管完全再通率、术前与术后2周美国国立卫生研究院卒中量表(National institutes of health stroke scale,NIHSS)评分、并发症发生率及术后3个月良好预后率。结果两组采用不同取栓技术后,研究组的取栓次数和手术操作时间均低于对照组(P<0.05)。术前两组的NIHSS评分差异无统计学意义(P>0.05)。术后2周,研究组的NIHSS评分显著低于对照组(P<0.05)。两组的血管完全再通率分别为70.59%和75.00%,术后3个月良好预后率分别为64.71%和60.00%,两组间差异无统计学意义(P>0.05)。研究组的并发症发生率(8.82%)显著低于对照组(20.00%)(P<0.05)。结论与SWIM取栓技术相比,ADAPT技术在血管再通率上无显著差异,但能显著减少急性脑卒中患者的取栓次数和手术操作时间,提升术后3个月的良好预后率,改善术后2周的NIHSS评分,并降低并发症发生率。ADAPT技术在改善患者功能恢复和降低并发症方面显示了更大的潜力,为急性缺血性脑卒中的临床治疗提供了有力的替代方案。展开更多
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s...A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances.展开更多
文摘To analyze main factors affecting the separation reliability between a missile and adapters for the launching process, a six DOF underwater dynamic model for the missile and adapters is utilized to simulate the separation process, considering elastic forces of separating springs, hydrodynamic forces, gravity and buoyancy. Moreover, a criterion based on the maximum separating distance is put forward to determine whether adapters separate with the missile reliably. The results show that the magnitude and position of elastic force, the wedge angle and mass of the adapter significantly affect the separating process. The local sensitivity analysis for the reference status of design parameters demonstrates that the wedge angle of adapters has the maximum influence about 70. 4% on the separating distance.
基金Supported by the National Natural Science Foundation of China(12071133)Natural Science Foundation of Henan Province(252300421993)Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110005)。
文摘In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.
文摘ren xing韧性Resilience This term indicates psychological flexibility and the strength to face and endure pressure,and the wisdom to adapt to and keep moving on in the current dynamic environment.
基金Supported by Chongqing Health Commission and Chongqing Science and Technology Bureau,No.2023MSXM182。
文摘Rheumatoid arthritis(RA)patients face significant psychological challenges alongside physical symptoms,necessitating a comprehensive understanding of how psychological vulnerability and adaptation patterns evolve throughout the disease course.This review examined 95 studies(2000-2025)from PubMed,Web of Science,and CNKI databases including longitudinal cohorts,randomized controlled trials,and mixed-methods research,to characterize the complex interplay between biological,psychological,and social factors affecting RA patients’mental health.Findings revealed three distinct vulnerability trajectories(45%persistently low,30%fluctuating improvement,25%persistently high)and four adaptation stages,with critical intervention periods occurring 3-6 months postdiagnosis and during disease flares.Multiple factors significantly influence psychological outcomes,including gender(females showing 1.8-fold increased risk),age(younger patients experiencing 42%higher vulnerability),pain intensity,inflammatory markers,and neuroendocrine dysregulation(48%showing cortisol rhythm disruption).Early psychological intervention(within 3 months of diagnosis)demonstrated robust benefits,reducing depression incidence by 42%with effects persisting 24-36 months,while different modalities showed complementary advantages:Cognitive behavioral therapy for depression(Cohen’s d=0.68),mindfulness for pain acceptance(38%improvement),and peer support for meaning reconstruction(25.6%increase).These findings underscore the importance of integrating routine psychological assessment into standard RA care,developing stage-appropriate interventions,and advancing research toward personalized biopsychosocial approaches that address the dynamic psychological dimensions of the disease.
基金financially supported by the Talent Initiation Fund of Wuxi University(550220008).
文摘With the increasing integration of renewable energy,microgrids are increasingly facing stability challenges,primarily due to the lack of inherent inertia in inverter-dominated systems,which is traditionally provided by synchronous generators.To address this critical issue,Virtual Synchronous Generator(VSG)technology has emerged as a highly promising solution by emulating the inertia and damping characteristics of conventional synchronous generators.To enhance the operational efficiency of virtual synchronous generators(VSGs),this study employs smallsignal modeling analysis,root locus methods,and synchronous generator power-angle characteristic analysis to comprehensively evaluate how virtual inertia and damping coefficients affect frequency stability and power output during transient processes.Based on these analyses,an adaptive control strategy is proposed:increasing the virtual inertia when the rotor angular velocity undergoes rapid changes,while strengthening the damping coefficient when the speed deviation exceeds a certain threshold to suppress angular velocity oscillations.To validate the effectiveness of the proposed method,a grid-connected VSG simulation platform was developed inMATLAB/Simulink.Comparative simulations demonstrate that the proposed adaptive control strategy outperforms conventional VSGmethods by significantly reducing grid frequency deviations and shortening active power response time during active power command changes and load disturbances.This approach enhances microgrid stability and dynamic performance,confirming its viability for renewable-dominant power systems.Future work should focus on experimental validation and real-world parameter optimization,while further exploring the strategy’s effectiveness in improvingVSG low-voltage ride-through(LVRT)capability and power-sharing applications in multi-parallel configurations.
基金funding from the National Key Research and Development Program of China(No.2018YFE0110000)the National Natural Science Foundation of China(No.11274259,No.11574258)the Science and Technology Commission Foundation of Shanghai(21DZ1205500)in support of the present research.
文摘While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance remains underexplored in field investigations.To evaluate the practical applicability of this emerging technique in adverse shallow sea channels,a field experiment was conducted using three communication modes:orthogonal frequency division multiplexing(OFDM),M-ary frequency-shift keying(MFSK),and direct sequence spread spectrum(DSSS)for reinforcement learning-driven adaptive modulation.Specifically,a Q-learning method is used to select the optimal modulation mode according to the channel quality quantified by signal-to-noise ratio,multipath spread length,and Doppler frequency offset.Experimental results demonstrate that the reinforcement learning-based adaptive modulation scheme outperformed fixed threshold detection in terms of total throughput and average bit error rate,surpassing conventional adaptive modulation strategies.
基金supported by Natural Science Foundation of Hu'nan Province(2024JJ5409)。
文摘In underwater target search path planning,the accuracy of sonar models directly dictates the accurate assessment of search coverage.In contrast to physics-informed sonar models,traditional geometric sonar models fail to accurately characterize the complex influence of marine environments.To overcome these challenges,we propose an acoustic physics-informed intelligent path planning framework for underwater target search,integrating three core modules:The acoustic-physical modeling module adopts 3D ray-tracing theory and the active sonar equation to construct a physics-driven sonar detection model,explicitly accounting for environmental factors that influence sonar performance across heterogeneous spaces.The hybrid parallel computing module adopts a message passing interface(MPI)/open multi-processing(Open MP)hybrid strategy for large-scale acoustic simulations,combining computational domain decomposition and physics-intensive task acceleration.The search path optimization module adopts the covariance matrix adaptation evolution algorithm to solve continuous optimization problems of heading angles,which ensures maximum search coverage for targets.Largescale experiments conducted in the Pacific and Atlantic Oceans demonstrate the framework's effectiveness:(1)Precise capture of sonar detection range variations from 5.45 km to 50 km in heterogeneous marine environments.(2)Significant speedup of 453.43×for acoustic physics modeling through hybrid parallelization.(3)Notable improvements of 7.23%in detection coverage and 15.86%reduction in optimization time compared to the optimal baseline method.The framework provides a robust solution for underwater search missions in complex marine environments.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2025-02-01295).
文摘Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice.
文摘四川大学计算机学院学生团队在大规模语言模型参数高效微调系统研究方向取得重要进展,其研究成果“mLoRA:Fine-Tuning LoRA Adapters via Highly-Efficient Pipeline Parallelism in Multiple GPUs”在国际数据库学术会议VLDB 2025 Research Track正式发表。VLDB(International Conference on Very Large Data Bases)是数据库领域的重要国际学术会议之一,涵盖数据库管理系统、数据密集型系统与大规模数据处理等方向。该工作已在多个国内外互联网企业的实际生产环境中部署应用,并获得一项中国发明专利和一项美国发明专利的受理。
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.
基金supported by the National Natural Science Foundation of China(42030508)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0301)the Key technology research and development projects in Xizang Autonomous Regions(XZ202101ZY0005G).
文摘A better understanding of the structure and dynamics of disturbed forests is key for forecasting their future successional trajectories.Despite vulnerability of subalpine forests to warming climate,little is known as to how their community composition has responded to disturbances and climate warming over decades.Before the 1970s,subalpine forests on the southeastern Qinghai-Tibet Plateau mainly experienced logging and fire,but afterwards they were more impacted by climate warming.Thus,they provide an excellent setting to test whether disturbances and climate warming led to changes in forest structure.Based on the analysis of 3145 forest inventory plots at 4-to 5-year resolution,we found that spruce-fir forests shifted to pine and broadleaved forests since the early 1970s.Such a turnover in species composition mainly occurred in the 1994e1998 period.By strongly altering site conditions,disturbances in concert with climate warming reshuffle community composition to warm-adapted broadleaf-pine species.Thus,moderate disturbances shifted forest composition through a gradual loss of resilience of spruce-fir forests.Shifts in these foundation species will have profound impacts on ecosystem functions and services.In the future,broadleaved forests could expand more rapidly than evergreen needle-leaved forests under moderate warming scenarios.In addition to climate,the effects of anthropogenic disturbances on subalpine forests should be considered in adaptive forest management and in projections of future forest changes.
基金supported by the Lebanese International University(LIU)with a funding amount of$500.
文摘Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In the project,we evaluated novel approaches integrating adaptive management,technological innovations,and community-based action towards more efficient sustainable conservation results and ecosystem resilience.The multi-site experimental design was based on comparison between conventional reserve management and novel integrative models implemented in diverse ecological zones.Data were collected over a period of three years employing remote sensing technologies,in situ biodiversity assessments,and large socioeconomic surveys.These instruments enabled a robust and multi-dimensional measurement of variables such as species diversity,ecological resilience,community engagement,and stakeholder engagement.The results indicate that adaptive strategies significantly enhance real-time decision-making abilities and enhance long-term ecosystem resilience.Further,technology-driven monitoring greatly enhances data accuracy,responsiveness,and early warning capabilities.Besides that,community-based conservation initiatives were found to be pivotal in facilitating local stewardship,enhancing participatory governance,and enabling more adaptive and adaptive policy systems.This research rejects mainstream conservation paradigms by placing importance on flexibility,interdisciplinarity,and inclusivity of governance systems in effectively mitigating the impacts of climate change and loss of biodiversity.Our findings offer strong evidence that emerging paradigms of conservation can provide greater ecological and social sustainability than traditional methods.These results support the need for a paradigm shift towards conservation strategies that are dynamic,collaborative,and technologically integrated,with significant implications for policy formulation as well as operational environmental management.
文摘目的探讨在急性缺血性脑卒中患者中应用直接抽吸一次性取栓(A direct aspiration First-Pass thrombectomy,ADAPT)进行血管再通的安全性、可行性及技术优势。方法回顾性分析本院神经内科2021年3月至2023年10月接受血管再通术治疗的54例急性脑卒中患者。根据取栓技术的不同,患者被分为研究组(应用ADAPT技术直接抽吸取栓,34例)和对照组[应用Solitaire FR支架机械取栓术(Solitaire FR with intracranial support catheter for mechanical thrombectomy,SWIM),20例]。比较两组的取栓次数、手术操作时间、血管完全再通率、术前与术后2周美国国立卫生研究院卒中量表(National institutes of health stroke scale,NIHSS)评分、并发症发生率及术后3个月良好预后率。结果两组采用不同取栓技术后,研究组的取栓次数和手术操作时间均低于对照组(P<0.05)。术前两组的NIHSS评分差异无统计学意义(P>0.05)。术后2周,研究组的NIHSS评分显著低于对照组(P<0.05)。两组的血管完全再通率分别为70.59%和75.00%,术后3个月良好预后率分别为64.71%和60.00%,两组间差异无统计学意义(P>0.05)。研究组的并发症发生率(8.82%)显著低于对照组(20.00%)(P<0.05)。结论与SWIM取栓技术相比,ADAPT技术在血管再通率上无显著差异,但能显著减少急性脑卒中患者的取栓次数和手术操作时间,提升术后3个月的良好预后率,改善术后2周的NIHSS评分,并降低并发症发生率。ADAPT技术在改善患者功能恢复和降低并发症方面显示了更大的潜力,为急性缺血性脑卒中的临床治疗提供了有力的替代方案。
基金The National Natural Science Foundation of China(No.U19B2031).
文摘A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances.