The influence of the distorted plane of the active phased array antenna on the electromagnetic performance is of great significance to the research on and development of the high-performance antennas. On the bent and ...The influence of the distorted plane of the active phased array antenna on the electromagnetic performance is of great significance to the research on and development of the high-performance antennas. On the bent and bowl-shape distortion, the model is established of the relationship between the electromagnetic performance and the position error of the radiated elements. The method is presented of analyzing the far-field pattern of the distorted rectangular active phased array antenna. The analysis results of a planar phased array antenna with different distortions grades prove the validity of the model. Therefore, by the method, the antenna designers may set the reasonable requirement on the structural tolerance in manufacturing antenna.展开更多
This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed a...This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed and implemented at 5.8 GHz with 64 RF Channels and 256 antenna elements.The 64-channel highly integrated active multibeam antenna system provides a verification platform for digital beamforming algorithm and massive MIMO channel estimation for next generation wireless communications.展开更多
To gain the tradeoff between lower sidelobe and higher power amplifiers efficiency,a transmitting beam shaping scheme with limited amplitude weight values for satellite active phased array antenna is presented. The sc...To gain the tradeoff between lower sidelobe and higher power amplifiers efficiency,a transmitting beam shaping scheme with limited amplitude weight values for satellite active phased array antenna is presented. The scheme is implemented by a dual coding genetic algorithm(GA). Phase and amplitude of array weight vectors for beam shaping are encoded by real coding and finite length binary coding,respectively,which,maintaining accuracy of results,reduces the amplitude dynamic range and improves the efficiency of power amplifiers. The presented algorithm,compared with complex-coded GA,increases the convergence rate due to the search space's decrease. In order to overcome the prematurity and obtain better global optimization or quasi-global optimization,a new dual coding GA based on "species diversity retention" strategy and adaptive crossover and mutation probability are presented.展开更多
An aperture design technique using multi-step amplitude quantization for two-dimensional solid-state active phased arrays to achieve low sidelobe is described. It can be applied to antennas with arbitrary complex aper...An aperture design technique using multi-step amplitude quantization for two-dimensional solid-state active phased arrays to achieve low sidelobe is described. It can be applied to antennas with arbitrary complex aperture. Also, the gain drop and sidelobe degradation due to random amplitude and phase errors and element (or T/R module) failures are investigated.展开更多
Planar phased-array satellite antennas deform when subjected to external disturbances such as thermal gradients or slewing maneuvers.Such distortion can degrade the coherence of the antenna and must therefore be elimi...Planar phased-array satellite antennas deform when subjected to external disturbances such as thermal gradients or slewing maneuvers.Such distortion can degrade the coherence of the antenna and must therefore be eliminated to maintain performance.To support planar phased-array satellite antennas,a truss with diagonal cables is often applied,generally pretensioned to improve the stiffness of the antenna and maintain the integrity of the structure.A new technique is proposed herein,using the diagonal cables as the actuators for static shape adjustment of the planar phased-array satellite antenna.In this technique,the diagonal cables are not pretensioned;instead,they are slack when the deformation of the antenna is small.When using this technique,there is no need to add redundant control devices,improving the reliability and reducing the mass of the antenna.The finite element method is used to establish a structural model for the satellite antenna,then a method is introduced to select proper diagonal cables and determine the corresponding forces.Numerical simulations of a simplified two-bay satellite antenna are first carried out to validate the proposed technique.Then,a simplified 18-bay antenna is also studied,because spaceborne satellite antennas have inevitably tended to be large in recent years.The numerical simulation results show that the proposed technique can be effectively used to adjust the static shape of planar phased-array satellite antennas,achieving high precision.展开更多
Large-scale array aided beamforming improves the spectral efficiency(SE) as a benefit of high angular resolution.When dual-beam downlink beamforming is applied to the train moving towards cell edge,the inter-beam ambi...Large-scale array aided beamforming improves the spectral efficiency(SE) as a benefit of high angular resolution.When dual-beam downlink beamforming is applied to the train moving towards cell edge,the inter-beam ambiguity(IBA) increases as the directional difference between beams becomes smaller.An adaptive antenna activation based beamforming scheme was proposed to mitigate IBA.In the district near the base station(BS),all antenna elements(AEs) were activated to generate two beams.As the distance from the train to the BS increased,only the minimum number of AEs satisfying the resolution criterion would be activated.At the cell edge,one beam was switched off due to intolerable IBA.The proposed scheme can achieve SE gain to the non-adaptive scheme and show more robustness against the direction-of-arrival(DOA) estimation error.展开更多
A novel dual-band antenna is proposed for mitigating the multi-path interference in the global navigation satellite system(GNSS) applications. The radiation patches consist of a shortedannular-ring reduced-surface-w...A novel dual-band antenna is proposed for mitigating the multi-path interference in the global navigation satellite system(GNSS) applications. The radiation patches consist of a shortedannular-ring reduced-surface-wave(SAR-RSW) element and an inverted-shorted-annular-ring reduced-surface-wave(ISAR-RSW)element. One key feature of the design is the proximity-coupled probe feeds to increase impedance bandwidth. The other is the defected ground structure band rejection filters to suppress the interaction effect between the SAR-RSW and the ISAR-RSW elements. In addition, trans-directional couplers are used to obtain tight coupling. Measurement results indicate that the antenna has a larger than 10 d B return loss bandwidth and a less than 3 d B axial-ratio(AR) bandwidth in the range of(1.164 – 1.255) GHz and(1.552 – 1.610) GHz. The gain of the passive antenna in the whole operating band is more than 7 d Bi.展开更多
In this paper, an approach to the design of shielded radio-frequency (RF) phased-array coils for magnetic resonance imaging (MRI) is proposed. The target field method is used to find current densities distributed ...In this paper, an approach to the design of shielded radio-frequency (RF) phased-array coils for magnetic resonance imaging (MRI) is proposed. The target field method is used to find current densities distributed on primary and shield coils. The stream function technique is used to discretize current densities and to obtain the winding patterns of the coils. The corresponding highly ill-conditioned integral equation is solved by the Tikhonov regularization with a penalty function related to the minimum curvature. To balance the simplicity and smoothness with the homogeneity of the magnetic field of the coll's winding pattern, the selection of a penalty factor is discussed in detail.展开更多
Aiming at the problem of the surface accuracy and electrical performance of the antenna in space environment are reduced due to thermal deformation caused by temperature load. This paper presents a method to compensat...Aiming at the problem of the surface accuracy and electrical performance of the antenna in space environment are reduced due to thermal deformation caused by temperature load. This paper presents a method to compensate the thermally induced shape distortion of antenna reflector by actively adjusting actuators in order to improve the electrical performance. The adjustment of each actuator is related to the local deformation of the panel. Then, taking a space deployable antenna with a diameter of 5 meters as an example, the finite element model is established. According to the range of the temperature variation in space (<span style="white-space:nowrap;">−</span>180<span style="white-space:nowrap;">°</span>C - 200<span style="white-space:nowrap;">°</span>C), different temperature loads are applied to the antenna. The variation of electrical properties and surface accuracy is analyzed and the worst working condition is determined, and the antenna is compensated based on this condition. Then, four different electrical performance parameters are used as the optimization objectives, and the electromechanical coupling optimization model is established, and the PSO algorithm is used to optimize the actuators adjustments. The results show that the method can effectively improve the electrical performance of the deformed reflector antenna.展开更多
An improved perturbation procedure is used for analyzing the radiation character-istics of the millimeter wave dielectric grating leaky wave antenna. The electromagnetic fields aredescribed in terms of an active trans...An improved perturbation procedure is used for analyzing the radiation character-istics of the millimeter wave dielectric grating leaky wave antenna. The electromagnetic fields aredescribed in terms of an active transverse transmission line network, which brings considerablephysical insight into the overall behavior of the antenna. The analysis is simple and practical. Itsaccuracy is as high as the rigorous method.展开更多
Design of ultra-wideband antennas is challenging in the stringent requirements that are often conflicting to achieve a wide impedance bandwidth while maintaining high radiation efficiency, uniform gain and compact siz...Design of ultra-wideband antennas is challenging in the stringent requirements that are often conflicting to achieve a wide impedance bandwidth while maintaining high radiation efficiency, uniform gain and compact size. A Multiple-Input Multiple-Output (MIMO) antenna system can enhance the overall antenna performance but at having to overcome new challenges such as reducing the mutual coupling and the correlation between the elements. A printed circular disc compact planar antenna is selected in this work due to its UWB performance and compact size for the MIMO antenna system. A parametric analysis is carried out to achieve an optimal design. The system developed consists of two elements with an overall size of 59 × 27 mm. The designed antenna system operates over the whole of the UWB bandwidth from 3.1 to 10.6 GHz with radiation efficiency up to 85% and reflection coefficients less that ?10 dB. The envelope correlation is less than ?60 dB throughout the UWB band while the diversity gain approaches 10 throughout the entire UWB bandwidth and Total Active Reflection Coefficient (TARC) between the antenna elements is less ?11 dB. Thus the proposed MIMO antenna outperforms similar antenna systems reported in the literature.展开更多
Beam scanning and forming can be achieved by coupled oscillators array without phase shifter. Active antenna array based on coupled oscillators array has the virtue of low cost, high integration, and high efficiency. ...Beam scanning and forming can be achieved by coupled oscillators array without phase shifter. Active antenna array based on coupled oscillators array has the virtue of low cost, high integration, and high efficiency. Traditional two dimensional coupled oscillators array has been arranged on rectangular lattices, and phase difference of adjacent elements is limited to [-90°, 90°]. Therefore, the beam scanning range is limited to [-30°, 30°] from normal for half wavelength element spacing. A new two dimensional coupled oscillators array with rhombus structure is presented. Phase control method and phase error of the array are also provided. Stability of the array is analyzed, and stable condition is given. When this coupled oscillators array with rhombus structure is used in active antenna array, theoretical results show that phase difference of adjacent elements reach the limit of [-180°, 180°] along the horizontal and vertical directions. Therefore, it has wider beam scanning range than that of a rectangular lattice structure.展开更多
Large-scale space membrane antennas have significant potential in satellite communication,space-based early warning,and Earth observation.Because of their large size and high flexibility,the dynamic analysis and contr...Large-scale space membrane antennas have significant potential in satellite communication,space-based early warning,and Earth observation.Because of their large size and high flexibility,the dynamic analysis and control of membrane antenna are challenging.To maintain the working performance of the antenna,the pointing and surface accuracies must be strictly maintained.Therefore,the accurate dynamic modeling and effective active control of large-scale space membrane antennas have great theoretical significance and practical value,and have attracted considerable interest in recent years.This paper reviews the dynamics and active control of large-scale space membrane antennas.First,the development and status of large-scale space membrane antennas are summarized.Subsequently,the key problems in the dynamics and active control of large membrane antennas,including the dynamics of wrinkled membranes,large-amplitude nonlinear vibration,nonlinear model reduction,rigid-flexible-thermal coupling dynamic modeling,on-orbit modal parameter identification,active vibration control,and wave-based vibration control,are discussed in detail.Finally,the research outlook and future trends are presented.展开更多
基金supported partly by the National Natural Science Foundation of China(50805111)the Natural Science Basic Research Plan in Shaanxi Province of China(SJ08E_203.)
文摘The influence of the distorted plane of the active phased array antenna on the electromagnetic performance is of great significance to the research on and development of the high-performance antennas. On the bent and bowl-shape distortion, the model is established of the relationship between the electromagnetic performance and the position error of the radiated elements. The method is presented of analyzing the far-field pattern of the distorted rectangular active phased array antenna. The analysis results of a planar phased array antenna with different distortions grades prove the validity of the model. Therefore, by the method, the antenna designers may set the reasonable requirement on the structural tolerance in manufacturing antenna.
文摘This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed and implemented at 5.8 GHz with 64 RF Channels and 256 antenna elements.The 64-channel highly integrated active multibeam antenna system provides a verification platform for digital beamforming algorithm and massive MIMO channel estimation for next generation wireless communications.
基金The project supported by National Natural Science Foundation of China (No. 60572095)Research Foundation for Doctors of ZZULI
文摘To gain the tradeoff between lower sidelobe and higher power amplifiers efficiency,a transmitting beam shaping scheme with limited amplitude weight values for satellite active phased array antenna is presented. The scheme is implemented by a dual coding genetic algorithm(GA). Phase and amplitude of array weight vectors for beam shaping are encoded by real coding and finite length binary coding,respectively,which,maintaining accuracy of results,reduces the amplitude dynamic range and improves the efficiency of power amplifiers. The presented algorithm,compared with complex-coded GA,increases the convergence rate due to the search space's decrease. In order to overcome the prematurity and obtain better global optimization or quasi-global optimization,a new dual coding GA based on "species diversity retention" strategy and adaptive crossover and mutation probability are presented.
文摘An aperture design technique using multi-step amplitude quantization for two-dimensional solid-state active phased arrays to achieve low sidelobe is described. It can be applied to antennas with arbitrary complex aperture. Also, the gain drop and sidelobe degradation due to random amplitude and phase errors and element (or T/R module) failures are investigated.
基金the National Natural Science Foundation of China(Grant 11772187)the research project of the Key Laboratory of Infrared System Detection and Imaging Technology of the Chinese Academy of Sciences(Grant CASIR201702)the Natural Science Foundation of Shanghai(Grant 16ZRi436200).
文摘Planar phased-array satellite antennas deform when subjected to external disturbances such as thermal gradients or slewing maneuvers.Such distortion can degrade the coherence of the antenna and must therefore be eliminated to maintain performance.To support planar phased-array satellite antennas,a truss with diagonal cables is often applied,generally pretensioned to improve the stiffness of the antenna and maintain the integrity of the structure.A new technique is proposed herein,using the diagonal cables as the actuators for static shape adjustment of the planar phased-array satellite antenna.In this technique,the diagonal cables are not pretensioned;instead,they are slack when the deformation of the antenna is small.When using this technique,there is no need to add redundant control devices,improving the reliability and reducing the mass of the antenna.The finite element method is used to establish a structural model for the satellite antenna,then a method is introduced to select proper diagonal cables and determine the corresponding forces.Numerical simulations of a simplified two-bay satellite antenna are first carried out to validate the proposed technique.Then,a simplified 18-bay antenna is also studied,because spaceborne satellite antennas have inevitably tended to be large in recent years.The numerical simulation results show that the proposed technique can be effectively used to adjust the static shape of planar phased-array satellite antennas,achieving high precision.
基金supported partially by the 973 Program under the Grant 2012CB316100
文摘Large-scale array aided beamforming improves the spectral efficiency(SE) as a benefit of high angular resolution.When dual-beam downlink beamforming is applied to the train moving towards cell edge,the inter-beam ambiguity(IBA) increases as the directional difference between beams becomes smaller.An adaptive antenna activation based beamforming scheme was proposed to mitigate IBA.In the district near the base station(BS),all antenna elements(AEs) were activated to generate two beams.As the distance from the train to the BS increased,only the minimum number of AEs satisfying the resolution criterion would be activated.At the cell edge,one beam was switched off due to intolerable IBA.The proposed scheme can achieve SE gain to the non-adaptive scheme and show more robustness against the direction-of-arrival(DOA) estimation error.
基金supported by the National Natural Science Foundation of China(61071044)the Traffic Applied Basic Research Project of the Ministry of Transport of China(2010-329-225-030)+2 种基金the Doctor Startup Foundation of Liaoning Province(20141103)the Scientific Research Project of the Department of Education of Liaoning Province(L2013196)the Fundamental Research Funds for the Central Universities(2014YB05)
文摘A novel dual-band antenna is proposed for mitigating the multi-path interference in the global navigation satellite system(GNSS) applications. The radiation patches consist of a shortedannular-ring reduced-surface-wave(SAR-RSW) element and an inverted-shorted-annular-ring reduced-surface-wave(ISAR-RSW)element. One key feature of the design is the proximity-coupled probe feeds to increase impedance bandwidth. The other is the defected ground structure band rejection filters to suppress the interaction effect between the SAR-RSW and the ISAR-RSW elements. In addition, trans-directional couplers are used to obtain tight coupling. Measurement results indicate that the antenna has a larger than 10 d B return loss bandwidth and a less than 3 d B axial-ratio(AR) bandwidth in the range of(1.164 – 1.255) GHz and(1.552 – 1.610) GHz. The gain of the passive antenna in the whole operating band is more than 7 d Bi.
基金Project supported by the National Nature Science Foundation of China (Grant No. 30900332)Grant of General Administration of Quality Supervision Inspection and Quarantine of China (Grant No. 201210079)+1 种基金the Program for Science and Technology Department of Zhejiang Province, China (Grant Nos. 2010C14010 and 2010C33172)the Natural Science Foundation of Zhejiang Province, China (Grant No. Y2090966)
文摘In this paper, an approach to the design of shielded radio-frequency (RF) phased-array coils for magnetic resonance imaging (MRI) is proposed. The target field method is used to find current densities distributed on primary and shield coils. The stream function technique is used to discretize current densities and to obtain the winding patterns of the coils. The corresponding highly ill-conditioned integral equation is solved by the Tikhonov regularization with a penalty function related to the minimum curvature. To balance the simplicity and smoothness with the homogeneity of the magnetic field of the coll's winding pattern, the selection of a penalty factor is discussed in detail.
文摘Aiming at the problem of the surface accuracy and electrical performance of the antenna in space environment are reduced due to thermal deformation caused by temperature load. This paper presents a method to compensate the thermally induced shape distortion of antenna reflector by actively adjusting actuators in order to improve the electrical performance. The adjustment of each actuator is related to the local deformation of the panel. Then, taking a space deployable antenna with a diameter of 5 meters as an example, the finite element model is established. According to the range of the temperature variation in space (<span style="white-space:nowrap;">−</span>180<span style="white-space:nowrap;">°</span>C - 200<span style="white-space:nowrap;">°</span>C), different temperature loads are applied to the antenna. The variation of electrical properties and surface accuracy is analyzed and the worst working condition is determined, and the antenna is compensated based on this condition. Then, four different electrical performance parameters are used as the optimization objectives, and the electromechanical coupling optimization model is established, and the PSO algorithm is used to optimize the actuators adjustments. The results show that the method can effectively improve the electrical performance of the deformed reflector antenna.
文摘An improved perturbation procedure is used for analyzing the radiation character-istics of the millimeter wave dielectric grating leaky wave antenna. The electromagnetic fields aredescribed in terms of an active transverse transmission line network, which brings considerablephysical insight into the overall behavior of the antenna. The analysis is simple and practical. Itsaccuracy is as high as the rigorous method.
文摘Design of ultra-wideband antennas is challenging in the stringent requirements that are often conflicting to achieve a wide impedance bandwidth while maintaining high radiation efficiency, uniform gain and compact size. A Multiple-Input Multiple-Output (MIMO) antenna system can enhance the overall antenna performance but at having to overcome new challenges such as reducing the mutual coupling and the correlation between the elements. A printed circular disc compact planar antenna is selected in this work due to its UWB performance and compact size for the MIMO antenna system. A parametric analysis is carried out to achieve an optimal design. The system developed consists of two elements with an overall size of 59 × 27 mm. The designed antenna system operates over the whole of the UWB bandwidth from 3.1 to 10.6 GHz with radiation efficiency up to 85% and reflection coefficients less that ?10 dB. The envelope correlation is less than ?60 dB throughout the UWB band while the diversity gain approaches 10 throughout the entire UWB bandwidth and Total Active Reflection Coefficient (TARC) between the antenna elements is less ?11 dB. Thus the proposed MIMO antenna outperforms similar antenna systems reported in the literature.
文摘Beam scanning and forming can be achieved by coupled oscillators array without phase shifter. Active antenna array based on coupled oscillators array has the virtue of low cost, high integration, and high efficiency. Traditional two dimensional coupled oscillators array has been arranged on rectangular lattices, and phase difference of adjacent elements is limited to [-90°, 90°]. Therefore, the beam scanning range is limited to [-30°, 30°] from normal for half wavelength element spacing. A new two dimensional coupled oscillators array with rhombus structure is presented. Phase control method and phase error of the array are also provided. Stability of the array is analyzed, and stable condition is given. When this coupled oscillators array with rhombus structure is used in active antenna array, theoretical results show that phase difference of adjacent elements reach the limit of [-180°, 180°] along the horizontal and vertical directions. Therefore, it has wider beam scanning range than that of a rectangular lattice structure.
基金the National Natural Science Foundation of China(Grant Nos.12102252 and 12172214)Natural Science Foundation of Chongqing(Grant No.CSTB2023NSCQ-MSX0761).
文摘Large-scale space membrane antennas have significant potential in satellite communication,space-based early warning,and Earth observation.Because of their large size and high flexibility,the dynamic analysis and control of membrane antenna are challenging.To maintain the working performance of the antenna,the pointing and surface accuracies must be strictly maintained.Therefore,the accurate dynamic modeling and effective active control of large-scale space membrane antennas have great theoretical significance and practical value,and have attracted considerable interest in recent years.This paper reviews the dynamics and active control of large-scale space membrane antennas.First,the development and status of large-scale space membrane antennas are summarized.Subsequently,the key problems in the dynamics and active control of large membrane antennas,including the dynamics of wrinkled membranes,large-amplitude nonlinear vibration,nonlinear model reduction,rigid-flexible-thermal coupling dynamic modeling,on-orbit modal parameter identification,active vibration control,and wave-based vibration control,are discussed in detail.Finally,the research outlook and future trends are presented.