Most of acridine based thermally activated delayed fluorescence(TADF)emitters are characterized by advantageous reverse intersystem crossing(RISC)rate(kRISCs)due to the perpendicular orientation of the acridine donor ...Most of acridine based thermally activated delayed fluorescence(TADF)emitters are characterized by advantageous reverse intersystem crossing(RISC)rate(kRISCs)due to the perpendicular orientation of the acridine donor to the acceptor moiety,but suffer from a poor radiation rate(kr)typically in the order of 10^(6) s^(−1).Herein,two sky blue TADF emitters 3,6-DMAC-AD-Py and 3,6-SFAC-AD-Py were developed by linking acridine(DMAC)and spiro-fluorene-acridine(SFAC)donors to 10-(pyridin-2-yl)acridin-9(10H)-one(AD-Py)acceptor.Larger SFAC and electron-deficient pyridyl groups are deliberately incorporated in 3,6-SFACAD-Py since the unique through-space interaction between them is designed to drive the rotation of inner acridine ring in SFAC for enhancing frontier molecular orbitals overlap while keeping a decent TADF behavior.Thus,the kr of 3,6-SFACAD-Py is increased to 1.5×10^(7) s^(−1).Simultaneously,SFAC donors improve spin orbital coupling strength and reduce the energy gaps,generating kRISC of 1.8×10^(6) s^(−1).This is the first acridine donor based TADF emitter realizing kr of 10^(7) s^(−1) and kRISC of 10^(6) s^(−1) by a through-space interaction strategy.3,6-SFACAD-Py enables a highly efficient sky-blue organic light-emitting diode with a maximum external quantum efficiency(EQE)of 34.7%and Commission International de I'Eclairage coordinates of(0.19,0.37).More importantly,the EQE still remained 27.6%and 16.9%at high brightness of 1000 and 10,000 cd m^(−2).展开更多
Multi-resonance thermally ac-tivated delayed fluorescence(MR-TADF)emitters are one of the most excellent materi-als for high performance or-ganic light-emitting diodes(OLEDs)with high color puri-ty benefiting from the...Multi-resonance thermally ac-tivated delayed fluorescence(MR-TADF)emitters are one of the most excellent materi-als for high performance or-ganic light-emitting diodes(OLEDs)with high color puri-ty benefiting from their nar-row full width at half maxi-mum(FWHM)and great de-vice performance.However,small spin-orbit coupling(SOC)is one of drawbacks for MR-TADF emitters and introduction of heavy atoms may be one effective solution.In this work,four MR-TADF molecules with different atoms(O,S,Se)are carried out based on the first-principles calculation,and excited state dynamics in both toluene and solid phase is investi-gated.Our calculation results indicate that heavy atoms could induce smaller adiabatic ener-gy gap and larger SOC between the first singlet excited state and the first triplet excited state,which is advantageous for the conversion of singlet and triplet excitons,and thus the generation of thermally activated delayed fluorescence(TADF).Though the reorganization energy and full width at half maximum(FWHM)of emission are increased,the influence is quite limited.Besides,the fluorescent rates are also little influenced.Our calculation results indicate that heavy atom introduction is an efficient strategy to enhance the SOC values of MR-TADF emitters without influencing other properties significantly.展开更多
This study documents pioneering results in marginal wells in Texas,where the application of RDV-00■restored production through delayed protonic activation catalyzed by reservoir energy.The product,based on RDV■(Vaso...This study documents pioneering results in marginal wells in Texas,where the application of RDV-00■restored production through delayed protonic activation catalyzed by reservoir energy.The product,based on RDV■(Vasoactive Dynamic Reactor)technology,operates via:Controlled protonation of molecular structures;Release of energetic carbocations;Autonomous transformation without external inputs.(a)Case 1(Well#E2-Starr County):Certified as“dry”by RRC(2022)after 48 months at 0 BPD;8 months post-injection of 5 gal RDV-00■(Fluid column:37 bbl;Wellhead pressure:80 psi(vs.0 psi initially)).(b)Case 2(Well#P1-Luling Field):Historical stripper well(0.25-0.5 BPD);23 months of immobilization with 15 gal RDV-00■;Critical results:(1)Initial production:42 BPD(8,400%above baseline);(2)Shut-in wellhead pressure:40 psi(neighboring wells=0-3 psi);(3)Current behavior:Continuous recharge from reservoir(well shut-in due to lack of storage).(c)Technically Significant Observations:(1)First case of self-sustaining reactivation in depleted wells;(2)Mechanism validated by Autonomous pressure generation(0→40-80 psi),and Continuous flow without additional stimulation;(3)No documented precedents in SPE/OnePetro literature to our knowledge.展开更多
μ-calpain activities and shear force values of bovine M. longissimus from Chinese Yellow crossbred bulls were analyzed,and the effect of delay chilling on μ-calpain activities and the tenderness of beef during postm...μ-calpain activities and shear force values of bovine M. longissimus from Chinese Yellow crossbred bulls were analyzed,and the effect of delay chilling on μ-calpain activities and the tenderness of beef during postmortem aging were studied. The results showed that delay chilling significantly improved μ-calpain activities (P<0.05) and enhanced the tenderness of bovine M. longissimus during earlier aging periods compared with conventional chilling. But in later aging periods,delay chilling weakened the effect on the tenderness of beef because of premature consumption of μ-calpain. The experiment results confirmed that delay chilling improved the rate of postmortem aging of beef and remarkably enhanced the tenderness of beef through the effect of delay chilling on μ-calpain activities.展开更多
Three kinds of triazine based organic molecules designed for thermally activated delayed fluorescence (TADF) emitters are investigated by first-principles calculations. An optimal Hartree-Fork (HF) method is adopt...Three kinds of triazine based organic molecules designed for thermally activated delayed fluorescence (TADF) emitters are investigated by first-principles calculations. An optimal Hartree-Fork (HF) method is adopted for the calculation of energy gap between the first singlet state (S1) and the first triplet state (T1). The natural transition orbital, the electron- hole (e-h) distribution and the e-h overlap diagram indicate that the S1 states for the three systems include both charge-transfer and some localized excitation component. Further quantitative analysis of the excitation property is performed by introducing the index Ar and the integral of e-h overlap S. It is found that symmetric geometry is a necessary condition for TADF emitters, which can provide more delocalized transition orbitals and consequently a small S1-T1 energy gap. Artful inserting aromatic groups between donors and acceptors can significantly enhance the oscillator strength. Finally, the energy state structures calculated with the optimal HF method is presented, which can provide basis for the study of the dynamics of excited states.展开更多
A purely organic D-π-A-π-D type emitter showing thermally activated delayed fluorescence(TADF)and room temperature phosphorescence(RTP)was designed and synthesized by utilizing the benzophenone as an acceptor and th...A purely organic D-π-A-π-D type emitter showing thermally activated delayed fluorescence(TADF)and room temperature phosphorescence(RTP)was designed and synthesized by utilizing the benzophenone as an acceptor and the N-phenyl-2-napthylamine as a donor moiety.It exhibits considerable TADF character in doped PMMA film and room temperature phosphorescence with a long lifetime of 74 ms at466 nm in solid state.The devices with the configuration of ITO/Mo_(2) O_(3)(4 nm)/mCP(30 nm)/mCP:x wt%NP2 BP/TmTyPB(60 nm)/LiF(1.5 nm)/AI(100 nm)were prepared by vacuum evaporation to explore their electroluminescent performance.Intere stingly,the non-doped device has obtained near-white emission with a fluorescence emission peak at 475 nm and a phosphore scence emission peak at 563 nm having the CIE coordinate of(0.23,0.32)and the maximum external quantum efficiency of 1.09%.展开更多
Thermally activated delayed fluorescence(TADF)organic molecules feature with long-lived delayed fluorescence,because they can undergo not only efficient intersystem crossing(ISC),but also efficient reverse intersystem...Thermally activated delayed fluorescence(TADF)organic molecules feature with long-lived delayed fluorescence,because they can undergo not only efficient intersystem crossing(ISC),but also efficient reverse intersystem crossing(RISC)at room temperature.As a new type of luminescent molecules,they have exhibited successful applications in organic light emitting diodes(OLEDs).Aside from OLEDs,they are also found to have potential applications in time-resolved luminescence imaging based on long-lived fluorescence property.Meanwhile,due to their excited triplet characteristic originated from efficient ISC,they were found to be applied in triplet-triplet annihilation upconversion(TTA-UC),photodynamic therapy(PDT)and organic photocatalytic synthesis.This review briefly summarizes the characteristics and excellent photophysical properties of TADF organic compounds,then covers their applications to date aside from OLEDs based on their highly efficient ISC ability and RISC ability at room temperature.展开更多
Numerous researchers have paid attention to achieve metal-free phosphorescence by exploring new structures or new mechanisms.Herein,a facile way is introduced to endow a common fluorescence dye,tetrabromofluorescein(4...Numerous researchers have paid attention to achieve metal-free phosphorescence by exploring new structures or new mechanisms.Herein,a facile way is introduced to endow a common fluorescence dye,tetrabromofluorescein(4 Br-Flu),some fabulous optical characteristics such as dual emission including thermally activated delayed fluorescence,room-temperature phosphorescence(RTP),and the excellent pH-sensitivity.Shortly,4 Br-Flu with good light-emitting properties is composed into the polymer system.The multiple bromine atoms promote the spin-orbit coupling effect and facilitate triplet excitation.Especially,the hydrogen bonding network of the polymer restricts the molecular motion of4 Br-Flu so that the system can emit long-wavelength RTP when 4 Br-Flu is doped into polyvinyl alcohol or co-polymerized with acrylamide.Due to the reversible transformation of protonation and deprotonation,the 4 Br-Flu based polymer responded to acid and alkali like a phosphorescent switch which makes it an excellent hydrogen chloride/ammonia gas leak detector in dry environment.展开更多
Thermally activated delayed fluorescent(TADF) materials capable of efficient solution-processed nondoped organic light-emitting diodes(OLEDs) are of important and practical significance for further development of OLED...Thermally activated delayed fluorescent(TADF) materials capable of efficient solution-processed nondoped organic light-emitting diodes(OLEDs) are of important and practical significance for further development of OLEDs. In this work, a new electron-donating segment, 2,7-di(9 H-carbazol-9-yl)-9,9-dimethyl-9,10-dihydroacridine(2 Cz-DMAC), was designed to develop solution-processable non-doped TADF emitters. 2 Cz-DMAC can not only simultaneously increase the solubility of compounds and suppress harmful aggregation-caused quenching, but also efficiently broaden the delocalization of the highest occupied molecular orbital and promote the reverse intersystem crossing process. Three new TADF emitters, 2-(2,7-di(9 H-carbazol-9-yl)-9,9-dimethylacridin-10(9 H)-yl)dibenzo[b,d]thiophene 5,5-dioxide(2 Cz-DMAC-BTB), 2-(2,7-di(9 H-carbazol-9-yl)-9,9-dimethylacridin-10(9 H)-yl)-9 H-thioxanthen-9-one(2 Cz-DMAC-TXO), 2-(2,7-di(9 H-carbazol-9-yl)-9,9-dimethylacridin-10(9 H)-yl)thianthrene 5,5,10,10-tetraoxide(2 Cz-DMAC-TTR), were developed by using 2 Cz-DMAC segment as the electron-donor. As anticipated, the solution-processed non-doped OLEDs employing 2 Cz-DMAC-BTB, 2 Cz-DMAC-TXO and 2 CzDMAC-TTR as the emitters respectively exhibited green, orange and red emissions with maximum external quantum efficiencies of 14.0%, 6.6% and 2.9%. These results successfully demonstrate the feasibility and convenience of developing efficient solution-processable non-doped TADF emitters based on 2 CzDMAC segment.展开更多
Two n-butoxy-encapsulated dendritic thermally activated delayed fluorescent(TADF) emitters(namely O-D1 and O-D2) with the first-/second-generation carbazoledendrons are designed and synthesized via C—N coupling betwe...Two n-butoxy-encapsulated dendritic thermally activated delayed fluorescent(TADF) emitters(namely O-D1 and O-D2) with the first-/second-generation carbazoledendrons are designed and synthesized via C—N coupling between carbazoledendrons and 2,4,6-tris(4-bromophenyl)-1,3,5-triazine core.It is found that,compa red with the commo nly-used tert-butyl groups,the use of n-butoxy encapsulation groups can lead to smallersinglet-triplet energy gap for the dendrimers,producing stronger TADF effect together with faster reverse intersystem crossing process.Solution-processed TADF organic light-emitting diodes(OLEDs) utilizingalkoxy-encapsulated dendrimers O-D1 and O-D2 as emitters exhibitstate-of-the-art device efficiency withthe maximum external quantum efficiency up to 16.8% and 20.6%,respectively,which are ~1.6 and~2.0 times that of the tert-butyl-encapsulated counterparts.These results suggest that alkoxy encapsulation of the carbazole-based TADF dendrimers can be a promising approach for developing highly efficient emitters for solution-processed OLEDs.展开更多
Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue therm...Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue thermally activated delayed fluorescence(TADF) layer using 9,9-dimethyl-9,10-dihydroacridine-diphenylsulfone(DMAC-DPS) and an ultrathin non-doped yellow phosphorescence layer employing bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2']iridium(acetylacetonate)((tbt)_2Ir(acac)).Two kinds of materials of 4,7-diphenyl-1,10-phenanthroline(Bphen) and 1,3,5-tris(2-Nphenylbenzimidazolyl) benzene(TPBi) are selected as the electron transporting layer(ETL),and the thickness of yellow EML is adjusted to optimize device performance.The device based on a 0.3-nm-thick yellow EML and Bphen exhibits high color stability with a slight Commission International de l'Eclairage(CIE) coordinates variation of(0.017,0.009) at a luminance ranging from 52 cd/m^2 to 6998 cd/m^2.The TPBi-based device yields a high efficiency with a maximum external quantum efficiency(EQE),current efficiency,and power efficiency of 10%,21.1 cd/A,and 21.3 lm/W,respectively.The ultrathin yellow EML suppresses hole trapping and short-radius Dexter energy transfer,so that Forster energy transfer(FRET)from DMAC-DPS to(tbt)_2Ir(acac) is dominant,which is beneficial to keep the color stable.The employment of TPBi with higher triplet excited state effectively alleviates the triplet exciton quenching by ETL to improve device efficiency.展开更多
The development of organic materials with white-light emission and thermally activated delayed fluorescence(TADF)properties in the solid state remain a challenge.Herein,a series of white-light-emitting organic luminog...The development of organic materials with white-light emission and thermally activated delayed fluorescence(TADF)properties in the solid state remain a challenge.Herein,a series of white-light-emitting organic luminogens have been developed and are found to show aggregation-induced delayed fluorescence(AIDF)characteristics.The AIDF emitters present dual-emission consisted of prompt fluorescence and TADF in the crystalline state.Their white-light emissions can be easily tuned by altering the chemical structure and connecting position of the heterocyclic aromatic substituent.Under the stimuli of mechanical force and solvent vapor,the compounds exhibit remarkable and reversible mechanochromism,in which their emission colors are switchable between white and yellow.Upon grinding,they also display linearly tunable luminescence colors,as well as force-induced TADF enhancement,which may be associated with the more compact molecular packing and the restriction of intramolecular motions.The results from time-resolved emission scanning and theoretical calculation suggest that the dual-emission of the AIDF luminogens likely results from the twisted intramolecular charge transfer transitions of the molecules,and the reversible mechanochromism properties probably stem from the interconversion of the quasi-axial and the quasi-equatorial conformations.展开更多
2,7-Di(9,9-dimethyl-9H-fluoren-l-yl)-9H-thioxanthen-9-one (DMBFTX) with thermally activated delayed fluorescence (TADF) was well designed and synthesized. The phosphorescent organic lightemitting device (PHOLED...2,7-Di(9,9-dimethyl-9H-fluoren-l-yl)-9H-thioxanthen-9-one (DMBFTX) with thermally activated delayed fluorescence (TADF) was well designed and synthesized. The phosphorescent organic lightemitting device (PHOLED) based on this novel TADF host material displays a stable red phosphorescence region, a peak external quantum efficiency (EQE) value of 12.9% and a low EQE roll-off of 38.8%at a luminance of 10000 cd/m2, which is benefited from the reverse intersystem crossing (RISC) of TADF host and less populated triplet exitons. Notably, the red device based on the TADF host DMBFrX exhibits superior electroluminescence performance and reduced efficiency roll-offcompared with the one hosted by commercially available host 1,3-bis(9-carbazolyl)benzene (mCP), illustrating the high potential of employing the TADF host material with small energy gap to reduce efficiency roll-off in PHOLED.展开更多
High efficiency, stable organic light-emitting diodes (OLEDs) based on 2-pheyl-4'-carbazole-9-H-Thioxanthen-9- one-10, 10-dioxide (TXO-PhCz) with different doping concentration are constructed. The stability of t...High efficiency, stable organic light-emitting diodes (OLEDs) based on 2-pheyl-4'-carbazole-9-H-Thioxanthen-9- one-10, 10-dioxide (TXO-PhCz) with different doping concentration are constructed. The stability of the encap- sulated devices are investigated in detail. The devices with the 10 wt% doped TXO-PhCz emitter layer (EML) show the best performance with a current efficiency of 52.1 cd/A, a power efficiency of 32.71re^W, and an external quantum efficiency (EQE) of 17.7%. The devices based on the lOwt%-doped TXO-PhCz EML show the best operational stability with a half-life time (LTSO) of 8Oh, which is 8 h longer than that of the reference devices based on fac-tris(2-phenylpyridinato)iridium( Ⅲ) (Ir(ppy)a). These indicate excellent stability of TXO-PhCz for redox and oxidation processes under electrical excitation and TXO-PhCz can be potentially used as the emitters for OLEDs with high efficiency and excellent stability. The high-performance device based on TXO-PhCz with high stability can be further improved by the optimization of the encapsulation technology and the development of a new host for TXO-PhCz.展开更多
The highest efficiency thermally activated delayed fluorescence(TADF)emitters in OLEDs are mostly based on twisted donor/acceptor(D/A)type organic molecules.Herein,we report the rational molecular design on twisted al...The highest efficiency thermally activated delayed fluorescence(TADF)emitters in OLEDs are mostly based on twisted donor/acceptor(D/A)type organic molecules.Herein,we report the rational molecular design on twisted all ortho-linked carbazole/oxadiazole(Cz/OXD)hybrids with tunable D-A interactions by adjusting the numbers of donor/acceptor units and electron-donating abilities.Singlet-triplet energy bandgaps(ΔEST)are facilely tuned from^0.4,0.15 to^0 eV in D-A,D-A-D to A-D-A type compounds.This variation correlates well with triplet-excited-state frontier orbital spatial separation efficiency.NonTADF feature with solid state photoluminescence quantum yield(PLQY)<10%is observed in D-A type 2CzOXD and D-A-D type 4CzOXD.Owing to the extremely lowΔEST for efficient reverse intersystem crossing,strong TADF with PLQY of 71%-92%is achieved in A-D-A type 4CzDOXD and 4tCzDOXD.High external quantum efficiency from 19.4%to 22.6%is achieved in A-D-A typed 4CzDOXD and 4tCzDOXD.展开更多
Thermally activated delayed fluorescence(TADF) emitters are primarily comprised of intramolecular charge-transfer(ICT) molecules with small energy difference between the lowest singlet and triplet excited states.T...Thermally activated delayed fluorescence(TADF) emitters are primarily comprised of intramolecular charge-transfer(ICT) molecules with small energy difference between the lowest singlet and triplet excited states.They lend extremely favorable electroluminescent performance to organic light-emitting diodes(OLEDs).This paper summarizes relevant issues and research efforts in the theoretical prediction of singlet- and triplet-transition energies of ICT molecules via time-dependent density functional theory(TDDFT).The successful application of the descriptor-based optimal Hartree-Fock percentage method and the optimally tuned range-separated functional to many TADF systems represent an interesting approach to the exact prediction of the complex excited-state molecular dynamics within TDDFT.展开更多
Three carbazole derivatives, Ac PTC, Px PTC and Pt PTC, consisting of two 9,9-dimethyl-9,10-dihydroacridine,phenoxazine or phenothiazine donor groups and one diphenyltriazine acceptor group fixed at 1,8,9-positions of...Three carbazole derivatives, Ac PTC, Px PTC and Pt PTC, consisting of two 9,9-dimethyl-9,10-dihydroacridine,phenoxazine or phenothiazine donor groups and one diphenyltriazine acceptor group fixed at 1,8,9-positions of a single carbazole ring via phenylene, are designed and synthesized. X-ray diffraction analysis of Ac PTC reveals that there exist multiple π-π interactions between the donor and acceptor groups to form a sandwich-like structural unit with edge-to-face interaction model. The compounds thus show obvious thermally activated delayed fluorescence with through-space charge transfer character and possess considerable photoluminescence quantum yields of up to 73% in doped films with sky-blue to yellow emissions. The solution-processed electroluminescent devices achieve the highest maximum external quantum efficiencies of 10.0%, 11% and 5.6% for Ac PTC, Px PTC and Pt PTC, respectively, with small efficiency roll-offs.展开更多
By applying two donor-acceptor motif molecules,5,10-di(pyridin-4-yl)-5,10-dihydrophenazine(L1)and 10,10'-di(pyridin-3-yl)-10H,10'H-9,9'-spiroacridine(L2),as ligands and CuI/AgCF3CO2 as metal salt,we synthe...By applying two donor-acceptor motif molecules,5,10-di(pyridin-4-yl)-5,10-dihydrophenazine(L1)and 10,10'-di(pyridin-3-yl)-10H,10'H-9,9'-spiroacridine(L2),as ligands and CuI/AgCF3CO2 as metal salt,we synthesized three coordination polymers,namely,{Cu4(L1)2I4}(CP1),{Cu(L2)I·CHCl3}(CP2)and{Ag(L2)CO2CF3·CHCl3}(CP3).X-ray crystallographic analysis revealed that three coordination polymers all feature one-dimensional(1D)linear chains which are consisting of molecular boxlike units.In comparison with low photoluminescence quantum yield(PLQY)of two ligands,three coordination polymers,CP1,CP2 and CP3,present more intense photoluminescence with PLQY of 15%,46%and 34%at room temperature respectively.The PL emission of CP1 and CP2 at room temperature could be attributed to the fast phosphorescence with lifetime both around 5 ms due to effective intersystem crossing(ISC).Whilst,it is worth noting that CP3 exhibit thermally activated delayed fluorescence(TADF)emission at room temperature.展开更多
The currently reported axial chiral molecules based on the 3,3'-substitution of the binaphthyl skeleton are limited by intrinsic fluorescence properties,resulting in generally low device efficiencies(EQE<5%)of ...The currently reported axial chiral molecules based on the 3,3'-substitution of the binaphthyl skeleton are limited by intrinsic fluorescence properties,resulting in generally low device efficiencies(EQE<5%)of related organic light emitting diodes(OLEDs).Herein,we designed and synthesized four pair of chiral binaphthyl enantiomers(R/S-1-R/S-4)adopting acceptor-donor-donor-acceptor(ADDA)structure by introducing different thioxanthone modification groups on the 3,3'-position of 2,2'-dimethoxy-1,1'-binaphthalene.Among them,emitter R/S-2 and R/S-4 obtained by enhancing intramolecular charge transfer exhibited TADF characteristics due to relatively small Est of 0.12eV and 0.17eV,and relatively moderate SOC matrix elements of 0.28 cm^(-1)and 0.10 cm^(-1)between the 1CT and 3LE states.The CD spectra of these enantiomers in diluted solutions showed perfect mirror images and reasonable gabs for small organic molecules(10^(-4)-10^(-3)).And the external quantum eficiencies(EQE)of 10.9%and 8.32%for device A and B based on emitter S-2 and S-4 were highest compared with currently reported axial chiral molecules based on the 3,3'-position substitution of binaphthyl skeleton,providing simple molecular design strategies to construct efficient CP-OLED device.展开更多
Through-space charge transfer(TSCT)is regarded as an effective way to develop thermally activated delayed fluorescence(TADF)emitters.Based on this strategy,many molecular frameworks have been proposed,among which spir...Through-space charge transfer(TSCT)is regarded as an effective way to develop thermally activated delayed fluorescence(TADF)emitters.Based on this strategy,many molecular frameworks have been proposed,among which spirobased scaffolds have been extensively studied due to their unique advantages.In this work,we developed three emitters SPS,SPO,and SPON,which were constructed with the same donor and various acceptors to explore the influence of acceptor modulation at the C9 position of fluorene for spirostructure TSCT emitters.The results show that the acceptor with too weak electronwithdrawing ability will cause the emitter to not have TADF properties,while the acceptor with too much steric hindrance will weaken the face-to-faceπ-πstacking interaction between donor/acceptor(D/A).Since SPO balances the electron-withdrawing strength and steric hindrance of the acceptor,it achieves the highest external quantum efficiency(EQE)of 17.75%.This work shows that appropriate acceptor selection is essential for the TADF properties and high efficiency of the spirobased scaffold TSCT emitter.展开更多
基金the National Natural Science Foundation of China(22078051,22478063,22408035)the Fundamental Research Funds for the Central Universities(DUT22-LAB610)the Open Fund of the Key Laboratory of Advanced Display and System Applications,Ministry of Education,Shanghai University(OF202401)for financial support of this work.
文摘Most of acridine based thermally activated delayed fluorescence(TADF)emitters are characterized by advantageous reverse intersystem crossing(RISC)rate(kRISCs)due to the perpendicular orientation of the acridine donor to the acceptor moiety,but suffer from a poor radiation rate(kr)typically in the order of 10^(6) s^(−1).Herein,two sky blue TADF emitters 3,6-DMAC-AD-Py and 3,6-SFAC-AD-Py were developed by linking acridine(DMAC)and spiro-fluorene-acridine(SFAC)donors to 10-(pyridin-2-yl)acridin-9(10H)-one(AD-Py)acceptor.Larger SFAC and electron-deficient pyridyl groups are deliberately incorporated in 3,6-SFACAD-Py since the unique through-space interaction between them is designed to drive the rotation of inner acridine ring in SFAC for enhancing frontier molecular orbitals overlap while keeping a decent TADF behavior.Thus,the kr of 3,6-SFACAD-Py is increased to 1.5×10^(7) s^(−1).Simultaneously,SFAC donors improve spin orbital coupling strength and reduce the energy gaps,generating kRISC of 1.8×10^(6) s^(−1).This is the first acridine donor based TADF emitter realizing kr of 10^(7) s^(−1) and kRISC of 10^(6) s^(−1) by a through-space interaction strategy.3,6-SFACAD-Py enables a highly efficient sky-blue organic light-emitting diode with a maximum external quantum efficiency(EQE)of 34.7%and Commission International de I'Eclairage coordinates of(0.19,0.37).More importantly,the EQE still remained 27.6%and 16.9%at high brightness of 1000 and 10,000 cd m^(−2).
基金supported by the National Natural Science Foundation of China(No.11974216,No.12374269)the support of the Taishan Scholar Project of Shandong Province。
文摘Multi-resonance thermally ac-tivated delayed fluorescence(MR-TADF)emitters are one of the most excellent materi-als for high performance or-ganic light-emitting diodes(OLEDs)with high color puri-ty benefiting from their nar-row full width at half maxi-mum(FWHM)and great de-vice performance.However,small spin-orbit coupling(SOC)is one of drawbacks for MR-TADF emitters and introduction of heavy atoms may be one effective solution.In this work,four MR-TADF molecules with different atoms(O,S,Se)are carried out based on the first-principles calculation,and excited state dynamics in both toluene and solid phase is investi-gated.Our calculation results indicate that heavy atoms could induce smaller adiabatic ener-gy gap and larger SOC between the first singlet excited state and the first triplet excited state,which is advantageous for the conversion of singlet and triplet excitons,and thus the generation of thermally activated delayed fluorescence(TADF).Though the reorganization energy and full width at half maximum(FWHM)of emission are increased,the influence is quite limited.Besides,the fluorescent rates are also little influenced.Our calculation results indicate that heavy atom introduction is an efficient strategy to enhance the SOC values of MR-TADF emitters without influencing other properties significantly.
文摘This study documents pioneering results in marginal wells in Texas,where the application of RDV-00■restored production through delayed protonic activation catalyzed by reservoir energy.The product,based on RDV■(Vasoactive Dynamic Reactor)technology,operates via:Controlled protonation of molecular structures;Release of energetic carbocations;Autonomous transformation without external inputs.(a)Case 1(Well#E2-Starr County):Certified as“dry”by RRC(2022)after 48 months at 0 BPD;8 months post-injection of 5 gal RDV-00■(Fluid column:37 bbl;Wellhead pressure:80 psi(vs.0 psi initially)).(b)Case 2(Well#P1-Luling Field):Historical stripper well(0.25-0.5 BPD);23 months of immobilization with 15 gal RDV-00■;Critical results:(1)Initial production:42 BPD(8,400%above baseline);(2)Shut-in wellhead pressure:40 psi(neighboring wells=0-3 psi);(3)Current behavior:Continuous recharge from reservoir(well shut-in due to lack of storage).(c)Technically Significant Observations:(1)First case of self-sustaining reactivation in depleted wells;(2)Mechanism validated by Autonomous pressure generation(0→40-80 psi),and Continuous flow without additional stimulation;(3)No documented precedents in SPE/OnePetro literature to our knowledge.
基金Supported by the National High Technology Research and Development Program of China(2006BAD05A03)~~
文摘μ-calpain activities and shear force values of bovine M. longissimus from Chinese Yellow crossbred bulls were analyzed,and the effect of delay chilling on μ-calpain activities and the tenderness of beef during postmortem aging were studied. The results showed that delay chilling significantly improved μ-calpain activities (P<0.05) and enhanced the tenderness of bovine M. longissimus during earlier aging periods compared with conventional chilling. But in later aging periods,delay chilling weakened the effect on the tenderness of beef because of premature consumption of μ-calpain. The experiment results confirmed that delay chilling improved the rate of postmortem aging of beef and remarkably enhanced the tenderness of beef through the effect of delay chilling on μ-calpain activities.
文摘Three kinds of triazine based organic molecules designed for thermally activated delayed fluorescence (TADF) emitters are investigated by first-principles calculations. An optimal Hartree-Fork (HF) method is adopted for the calculation of energy gap between the first singlet state (S1) and the first triplet state (T1). The natural transition orbital, the electron- hole (e-h) distribution and the e-h overlap diagram indicate that the S1 states for the three systems include both charge-transfer and some localized excitation component. Further quantitative analysis of the excitation property is performed by introducing the index Ar and the integral of e-h overlap S. It is found that symmetric geometry is a necessary condition for TADF emitters, which can provide more delocalized transition orbitals and consequently a small S1-T1 energy gap. Artful inserting aromatic groups between donors and acceptors can significantly enhance the oscillator strength. Finally, the energy state structures calculated with the optimal HF method is presented, which can provide basis for the study of the dynamics of excited states.
基金absolutely supported by Program for National Natural Scientific Foundation of China(Nos.91833304,61904120,61775155,61705158)Natural Science Foundation of Shanxi Province(Nos.201901D211090,201903D121100,201801D221124)+1 种基金the Fundamental Research Funds for the Central Universities,Shanxi Provincial Key Innovative Research Team in Science and Technology(No.201601D021043)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-006)。
文摘A purely organic D-π-A-π-D type emitter showing thermally activated delayed fluorescence(TADF)and room temperature phosphorescence(RTP)was designed and synthesized by utilizing the benzophenone as an acceptor and the N-phenyl-2-napthylamine as a donor moiety.It exhibits considerable TADF character in doped PMMA film and room temperature phosphorescence with a long lifetime of 74 ms at466 nm in solid state.The devices with the configuration of ITO/Mo_(2) O_(3)(4 nm)/mCP(30 nm)/mCP:x wt%NP2 BP/TmTyPB(60 nm)/LiF(1.5 nm)/AI(100 nm)were prepared by vacuum evaporation to explore their electroluminescent performance.Intere stingly,the non-doped device has obtained near-white emission with a fluorescence emission peak at 475 nm and a phosphore scence emission peak at 563 nm having the CIE coordinate of(0.23,0.32)and the maximum external quantum efficiency of 1.09%.
基金financially supported by the National Natural Science Foundation of China(Nos.21877011,21576038,21421005)the Talent Fund of Shandong Collaborative Innovation Center of Eco-Chemical Engineering(No.XTCXYX03)
文摘Thermally activated delayed fluorescence(TADF)organic molecules feature with long-lived delayed fluorescence,because they can undergo not only efficient intersystem crossing(ISC),but also efficient reverse intersystem crossing(RISC)at room temperature.As a new type of luminescent molecules,they have exhibited successful applications in organic light emitting diodes(OLEDs).Aside from OLEDs,they are also found to have potential applications in time-resolved luminescence imaging based on long-lived fluorescence property.Meanwhile,due to their excited triplet characteristic originated from efficient ISC,they were found to be applied in triplet-triplet annihilation upconversion(TTA-UC),photodynamic therapy(PDT)and organic photocatalytic synthesis.This review briefly summarizes the characteristics and excellent photophysical properties of TADF organic compounds,then covers their applications to date aside from OLEDs based on their highly efficient ISC ability and RISC ability at room temperature.
基金financially supported by the National Natural Science Foundation of China(Nos.21788102,22020102006,21722603 and 21871083)Shanghai Municipal Science and Technology Major Project(No.2018SHZDZX03)+3 种基金Program of Shanghai Academic/Technology Research Leader(No.20XD1421300)‘Shu Guang’project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation(No.19SG26)the Innovation Program of Shanghai Municipal Education Commission(No.2017-01-07-00-02-E00010)the Fundamental Research Funds for the Central Universities。
文摘Numerous researchers have paid attention to achieve metal-free phosphorescence by exploring new structures or new mechanisms.Herein,a facile way is introduced to endow a common fluorescence dye,tetrabromofluorescein(4 Br-Flu),some fabulous optical characteristics such as dual emission including thermally activated delayed fluorescence,room-temperature phosphorescence(RTP),and the excellent pH-sensitivity.Shortly,4 Br-Flu with good light-emitting properties is composed into the polymer system.The multiple bromine atoms promote the spin-orbit coupling effect and facilitate triplet excitation.Especially,the hydrogen bonding network of the polymer restricts the molecular motion of4 Br-Flu so that the system can emit long-wavelength RTP when 4 Br-Flu is doped into polyvinyl alcohol or co-polymerized with acrylamide.Due to the reversible transformation of protonation and deprotonation,the 4 Br-Flu based polymer responded to acid and alkali like a phosphorescent switch which makes it an excellent hydrogen chloride/ammonia gas leak detector in dry environment.
基金supported by the National Natural Science Foundation of China (Nos.51773029,52073040 and 51821002)the Fundamental Research Funds for the Central Universities (No.ZYGX2016Z010)the International Cooperation and Exchange Project of Science and Technology Department of Sichuan Province (No.2019YFH0057)。
文摘Thermally activated delayed fluorescent(TADF) materials capable of efficient solution-processed nondoped organic light-emitting diodes(OLEDs) are of important and practical significance for further development of OLEDs. In this work, a new electron-donating segment, 2,7-di(9 H-carbazol-9-yl)-9,9-dimethyl-9,10-dihydroacridine(2 Cz-DMAC), was designed to develop solution-processable non-doped TADF emitters. 2 Cz-DMAC can not only simultaneously increase the solubility of compounds and suppress harmful aggregation-caused quenching, but also efficiently broaden the delocalization of the highest occupied molecular orbital and promote the reverse intersystem crossing process. Three new TADF emitters, 2-(2,7-di(9 H-carbazol-9-yl)-9,9-dimethylacridin-10(9 H)-yl)dibenzo[b,d]thiophene 5,5-dioxide(2 Cz-DMAC-BTB), 2-(2,7-di(9 H-carbazol-9-yl)-9,9-dimethylacridin-10(9 H)-yl)-9 H-thioxanthen-9-one(2 Cz-DMAC-TXO), 2-(2,7-di(9 H-carbazol-9-yl)-9,9-dimethylacridin-10(9 H)-yl)thianthrene 5,5,10,10-tetraoxide(2 Cz-DMAC-TTR), were developed by using 2 Cz-DMAC segment as the electron-donor. As anticipated, the solution-processed non-doped OLEDs employing 2 Cz-DMAC-BTB, 2 Cz-DMAC-TXO and 2 CzDMAC-TTR as the emitters respectively exhibited green, orange and red emissions with maximum external quantum efficiencies of 14.0%, 6.6% and 2.9%. These results successfully demonstrate the feasibility and convenience of developing efficient solution-processable non-doped TADF emitters based on 2 CzDMAC segment.
基金the financial support from the Science and Technology Development Plan Project of Jilin Province (No.20180520003JH)the Natural Science Fund Project of Changchun University of Science and Technology (No.XQNJJ2017-14)the Youth Innovation Promotion Association of Chinese Academy of Sciences (No.2015180)。
文摘Two n-butoxy-encapsulated dendritic thermally activated delayed fluorescent(TADF) emitters(namely O-D1 and O-D2) with the first-/second-generation carbazoledendrons are designed and synthesized via C—N coupling between carbazoledendrons and 2,4,6-tris(4-bromophenyl)-1,3,5-triazine core.It is found that,compa red with the commo nly-used tert-butyl groups,the use of n-butoxy encapsulation groups can lead to smallersinglet-triplet energy gap for the dendrimers,producing stronger TADF effect together with faster reverse intersystem crossing process.Solution-processed TADF organic light-emitting diodes(OLEDs) utilizingalkoxy-encapsulated dendrimers O-D1 and O-D2 as emitters exhibitstate-of-the-art device efficiency withthe maximum external quantum efficiency up to 16.8% and 20.6%,respectively,which are ~1.6 and~2.0 times that of the tert-butyl-encapsulated counterparts.These results suggest that alkoxy encapsulation of the carbazole-based TADF dendrimers can be a promising approach for developing highly efficient emitters for solution-processed OLEDs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61675041 and 61605253)the Foundation for Innovation Research Groups of the National Natural Science Foundation of China(Grant No.61421002)the Science&Technology Department Program of Sichuan Province,China(Grant No.2016HH0027)
文摘Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue thermally activated delayed fluorescence(TADF) layer using 9,9-dimethyl-9,10-dihydroacridine-diphenylsulfone(DMAC-DPS) and an ultrathin non-doped yellow phosphorescence layer employing bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2']iridium(acetylacetonate)((tbt)_2Ir(acac)).Two kinds of materials of 4,7-diphenyl-1,10-phenanthroline(Bphen) and 1,3,5-tris(2-Nphenylbenzimidazolyl) benzene(TPBi) are selected as the electron transporting layer(ETL),and the thickness of yellow EML is adjusted to optimize device performance.The device based on a 0.3-nm-thick yellow EML and Bphen exhibits high color stability with a slight Commission International de l'Eclairage(CIE) coordinates variation of(0.017,0.009) at a luminance ranging from 52 cd/m^2 to 6998 cd/m^2.The TPBi-based device yields a high efficiency with a maximum external quantum efficiency(EQE),current efficiency,and power efficiency of 10%,21.1 cd/A,and 21.3 lm/W,respectively.The ultrathin yellow EML suppresses hole trapping and short-radius Dexter energy transfer,so that Forster energy transfer(FRET)from DMAC-DPS to(tbt)_2Ir(acac) is dominant,which is beneficial to keep the color stable.The employment of TPBi with higher triplet excited state effectively alleviates the triplet exciton quenching by ETL to improve device efficiency.
基金supported by the National Natural Science Foundation of China(No.51603233)the Natural Science Foundation of Guangdong Province of China(Nos.2019A1515010550,2020A1515010439,2019A1515011389)the GDUPS(2019)the Opening Foundation of Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education(Sun Yat-sen University,No.PCFM-2019-05)。
文摘The development of organic materials with white-light emission and thermally activated delayed fluorescence(TADF)properties in the solid state remain a challenge.Herein,a series of white-light-emitting organic luminogens have been developed and are found to show aggregation-induced delayed fluorescence(AIDF)characteristics.The AIDF emitters present dual-emission consisted of prompt fluorescence and TADF in the crystalline state.Their white-light emissions can be easily tuned by altering the chemical structure and connecting position of the heterocyclic aromatic substituent.Under the stimuli of mechanical force and solvent vapor,the compounds exhibit remarkable and reversible mechanochromism,in which their emission colors are switchable between white and yellow.Upon grinding,they also display linearly tunable luminescence colors,as well as force-induced TADF enhancement,which may be associated with the more compact molecular packing and the restriction of intramolecular motions.The results from time-resolved emission scanning and theoretical calculation suggest that the dual-emission of the AIDF luminogens likely results from the twisted intramolecular charge transfer transitions of the molecules,and the reversible mechanochromism properties probably stem from the interconversion of the quasi-axial and the quasi-equatorial conformations.
基金supported by National Natural Science Foundation of China(No. 61605158)the Science and TechnologyDepartment of Shaanxi Province(No. 2016JQ2028)the Education Department of Shaanxi Province(No. 16JK1790)
文摘2,7-Di(9,9-dimethyl-9H-fluoren-l-yl)-9H-thioxanthen-9-one (DMBFTX) with thermally activated delayed fluorescence (TADF) was well designed and synthesized. The phosphorescent organic lightemitting device (PHOLED) based on this novel TADF host material displays a stable red phosphorescence region, a peak external quantum efficiency (EQE) value of 12.9% and a low EQE roll-off of 38.8%at a luminance of 10000 cd/m2, which is benefited from the reverse intersystem crossing (RISC) of TADF host and less populated triplet exitons. Notably, the red device based on the TADF host DMBFrX exhibits superior electroluminescence performance and reduced efficiency roll-offcompared with the one hosted by commercially available host 1,3-bis(9-carbazolyl)benzene (mCP), illustrating the high potential of employing the TADF host material with small energy gap to reduce efficiency roll-off in PHOLED.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61420106002,51373189,61178061,and 61227008the Hundred Talents Program of the Chinese Academy of Sciences,the National Basic Research Program of China under Grant No 2014CB932600the Start-Up Fund of the Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences
文摘High efficiency, stable organic light-emitting diodes (OLEDs) based on 2-pheyl-4'-carbazole-9-H-Thioxanthen-9- one-10, 10-dioxide (TXO-PhCz) with different doping concentration are constructed. The stability of the encap- sulated devices are investigated in detail. The devices with the 10 wt% doped TXO-PhCz emitter layer (EML) show the best performance with a current efficiency of 52.1 cd/A, a power efficiency of 32.71re^W, and an external quantum efficiency (EQE) of 17.7%. The devices based on the lOwt%-doped TXO-PhCz EML show the best operational stability with a half-life time (LTSO) of 8Oh, which is 8 h longer than that of the reference devices based on fac-tris(2-phenylpyridinato)iridium( Ⅲ) (Ir(ppy)a). These indicate excellent stability of TXO-PhCz for redox and oxidation processes under electrical excitation and TXO-PhCz can be potentially used as the emitters for OLEDs with high efficiency and excellent stability. The high-performance device based on TXO-PhCz with high stability can be further improved by the optimization of the encapsulation technology and the development of a new host for TXO-PhCz.
基金National Natural Science Foundation of China(Nos.91833304,61805211)National Key Research and Development Program of China for the Joint Research Program between China and European Union(No.2016YFE0112000)+1 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20160042 and XYDXX-026)the Foundation for the Author of National Excellent Doctoral Dissertation of China FANEDD(No.201436)
文摘The highest efficiency thermally activated delayed fluorescence(TADF)emitters in OLEDs are mostly based on twisted donor/acceptor(D/A)type organic molecules.Herein,we report the rational molecular design on twisted all ortho-linked carbazole/oxadiazole(Cz/OXD)hybrids with tunable D-A interactions by adjusting the numbers of donor/acceptor units and electron-donating abilities.Singlet-triplet energy bandgaps(ΔEST)are facilely tuned from^0.4,0.15 to^0 eV in D-A,D-A-D to A-D-A type compounds.This variation correlates well with triplet-excited-state frontier orbital spatial separation efficiency.NonTADF feature with solid state photoluminescence quantum yield(PLQY)<10%is observed in D-A type 2CzOXD and D-A-D type 4CzOXD.Owing to the extremely lowΔEST for efficient reverse intersystem crossing,strong TADF with PLQY of 71%-92%is achieved in A-D-A type 4CzDOXD and 4tCzDOXD.High external quantum efficiency from 19.4%to 22.6%is achieved in A-D-A typed 4CzDOXD and 4tCzDOXD.
基金the Exploratory Research for Advanced Technology (ERATO) of Japanthe Key Special Program of the Ministry of Science and Technology of China(No.2016YFB0401000) for financial support
文摘Thermally activated delayed fluorescence(TADF) emitters are primarily comprised of intramolecular charge-transfer(ICT) molecules with small energy difference between the lowest singlet and triplet excited states.They lend extremely favorable electroluminescent performance to organic light-emitting diodes(OLEDs).This paper summarizes relevant issues and research efforts in the theoretical prediction of singlet- and triplet-transition energies of ICT molecules via time-dependent density functional theory(TDDFT).The successful application of the descriptor-based optimal Hartree-Fock percentage method and the optimally tuned range-separated functional to many TADF systems represent an interesting approach to the exact prediction of the complex excited-state molecular dynamics within TDDFT.
基金supported by the National Natural Science Foundation of China (Nos. 51973210, 21805271 and 21674110)the Science and Technology Development Project of Jilin Province, China (No. 20190201071JC)。
文摘Three carbazole derivatives, Ac PTC, Px PTC and Pt PTC, consisting of two 9,9-dimethyl-9,10-dihydroacridine,phenoxazine or phenothiazine donor groups and one diphenyltriazine acceptor group fixed at 1,8,9-positions of a single carbazole ring via phenylene, are designed and synthesized. X-ray diffraction analysis of Ac PTC reveals that there exist multiple π-π interactions between the donor and acceptor groups to form a sandwich-like structural unit with edge-to-face interaction model. The compounds thus show obvious thermally activated delayed fluorescence with through-space charge transfer character and possess considerable photoluminescence quantum yields of up to 73% in doped films with sky-blue to yellow emissions. The solution-processed electroluminescent devices achieve the highest maximum external quantum efficiencies of 10.0%, 11% and 5.6% for Ac PTC, Px PTC and Pt PTC, respectively, with small efficiency roll-offs.
基金financially supported by the National Natural Science Foundation (Nos.21772116,21671122 and 21475078)the Shandong Taishan Scholar’s Construction Project,JSPS KAKENHI (No.JP17H01232)the Japan Science and Technology Agency (JST),ERATO,Adachi Molecular Exciton Engineering Project,under JST ERATO (No.JPMJER1305),Japan
文摘By applying two donor-acceptor motif molecules,5,10-di(pyridin-4-yl)-5,10-dihydrophenazine(L1)and 10,10'-di(pyridin-3-yl)-10H,10'H-9,9'-spiroacridine(L2),as ligands and CuI/AgCF3CO2 as metal salt,we synthesized three coordination polymers,namely,{Cu4(L1)2I4}(CP1),{Cu(L2)I·CHCl3}(CP2)and{Ag(L2)CO2CF3·CHCl3}(CP3).X-ray crystallographic analysis revealed that three coordination polymers all feature one-dimensional(1D)linear chains which are consisting of molecular boxlike units.In comparison with low photoluminescence quantum yield(PLQY)of two ligands,three coordination polymers,CP1,CP2 and CP3,present more intense photoluminescence with PLQY of 15%,46%and 34%at room temperature respectively.The PL emission of CP1 and CP2 at room temperature could be attributed to the fast phosphorescence with lifetime both around 5 ms due to effective intersystem crossing(ISC).Whilst,it is worth noting that CP3 exhibit thermally activated delayed fluorescence(TADF)emission at room temperature.
基金funded by National Natural Science Foundation of China(No.21772209)International Partnership Program of Chinese Academy of Sciences(IPP)(No.1A1111KYSB20210028)National Program for Support of Top-notch Young Professionals.
文摘The currently reported axial chiral molecules based on the 3,3'-substitution of the binaphthyl skeleton are limited by intrinsic fluorescence properties,resulting in generally low device efficiencies(EQE<5%)of related organic light emitting diodes(OLEDs).Herein,we designed and synthesized four pair of chiral binaphthyl enantiomers(R/S-1-R/S-4)adopting acceptor-donor-donor-acceptor(ADDA)structure by introducing different thioxanthone modification groups on the 3,3'-position of 2,2'-dimethoxy-1,1'-binaphthalene.Among them,emitter R/S-2 and R/S-4 obtained by enhancing intramolecular charge transfer exhibited TADF characteristics due to relatively small Est of 0.12eV and 0.17eV,and relatively moderate SOC matrix elements of 0.28 cm^(-1)and 0.10 cm^(-1)between the 1CT and 3LE states.The CD spectra of these enantiomers in diluted solutions showed perfect mirror images and reasonable gabs for small organic molecules(10^(-4)-10^(-3)).And the external quantum eficiencies(EQE)of 10.9%and 8.32%for device A and B based on emitter S-2 and S-4 were highest compared with currently reported axial chiral molecules based on the 3,3'-position substitution of binaphthyl skeleton,providing simple molecular design strategies to construct efficient CP-OLED device.
基金financial support from the National Natural Science Foundation of China(Nos.51773141,51873139,61961160731,62175171 and 22175124)funded by the Suzhou Science and Technology Plan Project(No.SYG202010)+2 种基金supported by Suzhou Key Laboratory of Functional Nano&Soft Materials,Collaborative Innovation Center of Suzhou Nano Science&Technologythe 111 ProjectJoint International Research Laboratory of Carbon-Based Functional Materials and Devices。
文摘Through-space charge transfer(TSCT)is regarded as an effective way to develop thermally activated delayed fluorescence(TADF)emitters.Based on this strategy,many molecular frameworks have been proposed,among which spirobased scaffolds have been extensively studied due to their unique advantages.In this work,we developed three emitters SPS,SPO,and SPON,which were constructed with the same donor and various acceptors to explore the influence of acceptor modulation at the C9 position of fluorene for spirostructure TSCT emitters.The results show that the acceptor with too weak electronwithdrawing ability will cause the emitter to not have TADF properties,while the acceptor with too much steric hindrance will weaken the face-to-faceπ-πstacking interaction between donor/acceptor(D/A).Since SPO balances the electron-withdrawing strength and steric hindrance of the acceptor,it achieves the highest external quantum efficiency(EQE)of 17.75%.This work shows that appropriate acceptor selection is essential for the TADF properties and high efficiency of the spirobased scaffold TSCT emitter.