Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does no...Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does not represent an important parameter.However,in critical applications,this parameter represents a crucial aspect.One important sensing device used in IoT designs is the accelerometer.In most applications,the response time of the embedded driver software handling this device is generally not analysed and not taken into account.In this paper,we present the design and implementation of a predictable real-time driver stack for a popular accelerometer and gyroscope device family.We provide clear justifications for why this response time is extremely important for critical applications in the acquisition process of such data.We present extensive measurements and experimental results that demonstrate the predictability of our solution,making it suitable for critical real-time systems.展开更多
In order to suppress the influence of temperature changes on the performance of accelerometers,a digital quartz resonant accelerometer with low temperature drift is developed using a quartz resonator cluster as a tran...In order to suppress the influence of temperature changes on the performance of accelerometers,a digital quartz resonant accelerometer with low temperature drift is developed using a quartz resonator cluster as a transducer element.In addition,a digital intellectual property(IP) is designed in FPGA to achieve signal processing and fusion of integrated resonators.A testing system for digital quartz resonant accelerometers is established to characterize the performance under different conditions.The scale factor of the accelerometer prototype reaches 3561.63 Hz/g in the range of -1 g to +1 g,and 3542.5 Hz/g in the range of-10 g to+10 g.In different measurement ranges,the linear correlation coefficient R~2 of the accelerometer achieves greater than 0.998.The temperature drift of the accelerometer prototype is tested using a constant temperature test chamber,with a temperature change from -20℃ to 80℃.After temperature-drift compensation,the zero bias temperature coefficient falls to 0.08 mg/℃,and the scale factor temperature coefficient is 65.43 ppm/℃.The experimental results show that the digital quartz resonant accelerometer exhibits excellent sensitivity and low temperature drift.展开更多
This study focuses on the design and validation of a behavior classification system for cattle using behavioral data collected through accelerometer sensors.Data collection and behavioral analysis are achieved using m...This study focuses on the design and validation of a behavior classification system for cattle using behavioral data collected through accelerometer sensors.Data collection and behavioral analysis are achieved using machine learning(ML)algorithms through accelerometer sensors.However,behavioral analysis poses challenges due to the complexity of cow activities.The task becomes more challenging in a real-time behavioral analysis system with the requirement for shorter data windows and energy constraints.Shorter windows may lack sufficient information,reducing algorithm performance.Additionally,the sensor’s position on the cowsmay shift during practical use,altering the collected accelerometer data.This study addresses these challenges by employing a 3-s data window to analyze cow behaviors,specifically Feeding,Lying,Standing,and Walking.Data synchronization between accelerometer sensors placed on the neck and leg compensates for the lack of information in short data windows.Features such as the Vector of Dynamic Body Acceleration(VeDBA),Mean,Variance,and Kurtosis are utilized alongside the Decision Tree(DT)algorithm to address energy efficiency and ensure computational effectiveness.This study also evaluates the impact of sensor misalignment on behavior classification.Simulated datasets with varying levels of sensor misalignment were created,and the system’s classification accuracy exceeded 0.95 for the four behaviors across all datasets(including original and simulated misalignment datasets).Sensitivity(Sen)and PPV for all datasets were above 0.9.The study provides farmers and the dairy industry with a practical,energy-efficient system for continuously monitoring cattle behavior to enhance herd productivity while reducing labor costs.展开更多
Device-based measurements are recommended to improve population-based physical activity(PA)surveillance.1,2However,implementation remains challenging due to lack of consensus on analytical methods,and the most widely ...Device-based measurements are recommended to improve population-based physical activity(PA)surveillance.1,2However,implementation remains challenging due to lack of consensus on analytical methods,and the most widely used“generic”(absolute intensity)cut-point approach has limited generalisability to population-level free-living data.Further,current methods generally fail to account for differences in people's physical capacity.展开更多
Vibration detection using sensors with both wide working frequency range,good sensitivity,and other good performances is a topic of great interest in fields such as inertial navigation,deep-sea fishing boat engines co...Vibration detection using sensors with both wide working frequency range,good sensitivity,and other good performances is a topic of great interest in fields such as inertial navigation,deep-sea fishing boat engines condition monitoring,seismic monitoring,attitude,and heading reference system,etc.This paper investigates two 6H-SIC MEMS diaphragms,one triangular and the other square,used in a fiber optic Fabry–Perot(FP)accelerometer in an experimental scenario.The triangular chip shows a wide working frequency range of 630 Hz–5300 Hz,a natural frequency of 44.3 k Hz,and a mechanical sensitivity of 0.154 nm/g.An optimal structure of the square chip used in a probe such as a fiber optic FP accelerometer also shows a wide working frequency range of 120 Hz–2300 Hz;a good sensitivity of 31.5 m V/g,a resonance frequency of7873 Hz,an accuracy of 0.96%F.S.,a frequency measurement error of 1.15%,and an excellent linearity of 0.9995.展开更多
Type 2 diabetes(T2D)is a global public health issue.In 2021,537 million adults were diagnosed with T2D,corresponding to 10.5%of adults aged 20 and older.^(1)T2D increases the risks for morbidity,disability,and prematu...Type 2 diabetes(T2D)is a global public health issue.In 2021,537 million adults were diagnosed with T2D,corresponding to 10.5%of adults aged 20 and older.^(1)T2D increases the risks for morbidity,disability,and premature mortality,which increased by 3%between 2000 and 2019.2 Evidence is strong that maintaining a healthy diet,engaging in regular physical activity(PA),and preventing obesity can prevent or delay the incidence of T2D.展开更多
In order to get rid of the dependence on high-precision centrifuges in accelerometer nonlinear coefficients calibration,this paper proposes a system-level calibration method for field condition.Firstly,a 42-dimension ...In order to get rid of the dependence on high-precision centrifuges in accelerometer nonlinear coefficients calibration,this paper proposes a system-level calibration method for field condition.Firstly,a 42-dimension Kalman filter is constructed to reduce impact brought by turntable.Then,a biaxial rotation path is designed based on the accelerometer output model,including orthogonal 22 positions and tilt 12 positions,which enhances gravity excitation on nonlinear coefficients of accelerometer.Finally,sampling is carried out for calibration and further experiments.The results of static inertial navigation experiments lasting 4000 s show that compared with the traditional method,the proposed method reduces the position error by about 390 m.展开更多
A high precision detection technique is analyzed based on the optical micro electro-mechanical system(MEMS)accelerometer with double gratings for noise suppression and scale factor enhancement.The brief sensing model ...A high precision detection technique is analyzed based on the optical micro electro-mechanical system(MEMS)accelerometer with double gratings for noise suppression and scale factor enhancement.The brief sensing model and modulation detection model are built using the phase sensitive detection,and the relationship between stimulated acceleration and system output is given.The schematics of gap modulation and light intensity modulation are analyzed respectively,and the choice of modulation frequency in the optical MEMS accelerometer system is discussed.According to the experimental results,the scale factor is improved from 15.45 V/g with the gap modulation to 18.78 V/g with the light intensity modulation,and the signal to noise ratio is improved from 42.95 dB to 81.73 dB.The overall noise level in the optical MEMS accelerometer is effectively suppressed.展开更多
Purpose:The aim of the current study was to investigate the association of accelerometer-measured sleep duration and different intensities of physical activity(PA)with the risk of incident type 2 diabetes in a populat...Purpose:The aim of the current study was to investigate the association of accelerometer-measured sleep duration and different intensities of physical activity(PA)with the risk of incident type 2 diabetes in a population-based prospective cohort study.Methods:Altogether,88,000 participants(mean age=62.2±7.9 years,mean±SD)were included from the UK Biobank.Sleep duration(short:<6 h/day;normal:6-8 h/day;long:>8 h/day)and PA of different intensities were measured using a wrist-won accelerometer over a 7-day period between 2013 and 2015.PA was classified according to the median or World Health Organization-recommendation:total volume of PA(high,low),moderate-to-vigorous PA(MVPA)(recommended,not recommended),and light-intensity PA(high,low).Incidence of type 2diabetes was ascertained using hospital records or death registries.Results:During a median follow-up of 7.0 years,1615 incident type 2 diabetes cases were documented.Compared with normal sleep duration,short(hazard ratio(HR)=1.21,95%confidence interval(95%CI):1.03-1.41)but not long sleep duration(HR=1.01,95%CI:0.89-1.15)was associated with excessive type 2 diabetes risk.This increased risk among short sleepers seems to be protected against by PA.Compared with normal sleepers with high or recommended PA,short sleepers with low volume of PA(HR=1.81,95%CI:1.46-2.25),not recommended(below the World Health Organization-recommended level of)MVPA(HR=1.92,95%CI:1.55-2.36),or low light-intensity PA(HR=1.49,95%CI:1.13-1.90)had a higher risk of type 2 diabetes,while short sleepers with a high volume of PA(HR=1.14,95%CI:0.88-1.49),recommended MVPA(HR=1.02,95%CI:0.71-1.48),or high light-intensity PA(HR=1.14,95%CI:0.92-1.41)did not.Conclusion:Accelerometer-measured short but not long sleep duration was associated with a higher risk of incident type 2 diabetes.A higher level of PA,regardless of intensity,potentially ameliorates this excessive risk.展开更多
Analyzing physical activities through wearable devices is a promising research area for improving health assessment.This research focuses on the development of an affordable and real-time Human Activity Recognition(HA...Analyzing physical activities through wearable devices is a promising research area for improving health assessment.This research focuses on the development of an affordable and real-time Human Activity Recognition(HAR)system designed to operate on low-performance microcontrollers.The system utilizes data from a bodyworn accelerometer to recognize and classify human activities,providing a cost-effective,easy-to-use,and highly accurate solution.A key challenge addressed in this study is the execution of efficient motion recognition within a resource-constrained environment.The system employs a Random Forest(RF)classifier,which outperforms Gradient Boosting Decision Trees(GBDT),Support Vector Machines(SVM),and K-Nearest Neighbors(KNN)in terms of accuracy and computational efficiency.The proposed features Average absolute deviation(AAD),Standard deviation(STD),Interquartile range(IQR),Range,and Root mean square(RMS).The research has conducted numerous experiments and comparisons to establish optimal parameters for ensuring system effectiveness,including setting a sampling frequency of 50 Hz and selecting an 8-s window size with a 40%overlap between windows.Validation was conducted on both the WISDM public dataset and a self-collected dataset,focusing on five fundamental daily activities:Standing,Sitting,Jogging,Walking,and Walking the stairs.The results demonstrated high recognition accuracy,with the system achieving 96.7%on the WISDM dataset and 97.13%on the collected dataset.This research confirms the feasibility of deploying HAR systems on low-performance microcontrollers and highlights the system’s potential applications in patient support,rehabilitation,and elderly care.展开更多
The nitrogen-vacancy (NV) center quantum systems have emerged as versatile tools in the field of precision measurement because of their high sensitivity in spin state detection and miniaturization potential as solid-s...The nitrogen-vacancy (NV) center quantum systems have emerged as versatile tools in the field of precision measurement because of their high sensitivity in spin state detection and miniaturization potential as solid-state platforms.In this paper,an acceleration sensing scheme based on NV spin–strain coupling is proposed,which can effectively eliminate the influence of the stray noise field introduced by traditional mechanical schemes.Through the finite element simulation,it is found that the measurement bandwidth of this ensemble NV spin system ranges from 3 kHz to hundreds of kHz with structure√optimization.The required power is at the sub-μW level,corresponding to a noise-limited sensitivity of 6.7×10^(-5) /√Hz.Compared with other types of accelerometers,this micro-sized diamond sensor proposed here has low power consumption,exquisite sensitivity,and integration potential.This research opens a fresh perspective to realize an accelerometer with appealing comprehensive performance applied in biomechanics and inertial measurement fields.展开更多
Purpose: This study focused on maintaining and improving the walking function of late-stage older individuals while longitudinally tracking the effects of regular exercise programs in a day-care service specialized fo...Purpose: This study focused on maintaining and improving the walking function of late-stage older individuals while longitudinally tracking the effects of regular exercise programs in a day-care service specialized for preventive care over 5 years, using detailed gait function measurements with an accelerometer-based system. Methods: Seventy individuals (17 male and 53 female) of a daycare service in Tokyo participated in a weekly exercise program, meeting 1 - 2 times. The average age of the participants at the start of the program was 81.4 years. Gait function, including gait speed, stride length, root mean square (RMS) of acceleration, gait cycle time and its standard deviation, and left-right difference in stance time, was evaluated every 6 months. Results: Gait speed and stride length improved considerably within six months of starting the exercise program, confirming an initial improvement in gait function. This suggests that regular exercise programs can maintain or improve gait function even age groups that predictably have a gradual decline in gait ability due to enhanced age. In the long term, many indicators tended to approach baseline values. However, the exercise program seemingly counteracts age-related changes in gait function and maintains a certain level of function. Conclusions: While a decline in gait ability with aging is inevitable, establishing appropriate exercise habits in late-stage older individuals may contribute to long-term maintenance of gait function.展开更多
A calculation and test method for the natural frequency of a high-g micro accelerometer with complex structures is presented. A universal formula for natural frequency, which can significantly simplify the structural ...A calculation and test method for the natural frequency of a high-g micro accelerometer with complex structures is presented. A universal formula for natural frequency, which can significantly simplify the structural design process, is deduced and confirmed by experiment. A simplified analytical model is established to describe the accelerometer's mechanical behavior and deduce the formula for the natural frequency. Finite element modeling is also conducted to evaluate the natural frequency of the micro-accelerometer and verify the formula. The results obtained from the analytical model and the finite element simulation show good agreement. Finally, a shock comparison method designed for acquiring the high frequency characteristics of the accelerometer is introduced to verify the formula by testing its actual natural frequency.展开更多
Resonant accelerometer is designed,which includes two double-ended tuning forks,a proof mass,four-leverage system amplifying inertial force,and drive/sense combs.Each tuning fork is electrostatically actuated and sens...Resonant accelerometer is designed,which includes two double-ended tuning forks,a proof mass,four-leverage system amplifying inertial force,and drive/sense combs.Each tuning fork is electrostatically actuated and sensed at resonance using comb electrodes.The device is fabricated using MEMS bulk-silicon technology,whose sensitive degree is 27 3Hz/g,and the resolution is 167 8μg.展开更多
A novel capacitive biaxial microaccelerometer with a highly symmetrical microstructure is developed. The sensor is composed of a single seismic mass, grid strip, supporting beam, joint beam, and damping adjusting comb...A novel capacitive biaxial microaccelerometer with a highly symmetrical microstructure is developed. The sensor is composed of a single seismic mass, grid strip, supporting beam, joint beam, and damping adjusting combs. The sensing method of changing capacitance area is used in the design,which depresses the requirement of the DRIE process, and de- creases electronic noise by increasing sensing voltage to improve the resolution. The parameters and characteristics of the biaxial microaccelerometer are discussed with the FEM tool ANSYS. The simulated results show that the transverse sensitivity of the sensor is equal to zero. The testing devices based on the slide-film damping effect are fabricated, and the testing quality factor is 514, which shows that the designed structure can improve the resolution and proves the feasibility of the designed process.展开更多
In allusion to the limitations of the traditional attitude measurement system consisting of a three-axis magnetic sensor and two accelerometers on high-spinning projectile, a new scheme comprised of two magnetic senso...In allusion to the limitations of the traditional attitude measurement system consisting of a three-axis magnetic sensor and two accelerometers on high-spinning projectile, a new scheme comprised of two magnetic sensors and two accelerometers installed in a particular way is given. The configuration of the sensors is described. The calculation method and the mathematical model of the projectile attitude based on the sensor configuration are discussed. The basic calculation method including the Magsonde Window, the proof of the ratios of maximums and minimums and the calculation of the attitude angles are analyzed in theory. Finally, the system is simulated under the given conditions. The simulation result indicates that the estimated attitude angles are in agreement with the true attitude angles.展开更多
A tunneling accelerometer is fabricated and characterized based on the extension of the silicon-glass anodic-bonding and deep etching releasing process provided by Peking University.The tunneling current under open lo...A tunneling accelerometer is fabricated and characterized based on the extension of the silicon-glass anodic-bonding and deep etching releasing process provided by Peking University.The tunneling current under open loop operation is tested in the air by HP4145B semiconductor analyzer,which verifies the presence of tunneling current and the exponential relationship between tunneling gap and tunneling current.The tunneling barrier is extrapolated to be from 1.182 to 2.177eV.The threshold voltages are tested to be 14~16V for most of the devices.The threshold voltages under -1,0,and +1g are tested,respectively,which shows the sensitivity of the accelerometer is about 87mV/g.展开更多
This paper presents two approaches for system-level simulation of force-balance accelerometers. The derivation of the system-level model is elaborated and simulation results are obtained from the implementation of tho...This paper presents two approaches for system-level simulation of force-balance accelerometers. The derivation of the system-level model is elaborated and simulation results are obtained from the implementation of those strategies on the fabricated silicon force-balance MEMS accelerometer. The mathematical model presented is implemented in VHDL- AMS and SIMULINK TM,respectively. The simulation results from the two approaches are compared and show a slight difference. Using VHDL-AMS is flexible,reusable,and more accurate. But there is not a mature solver developed for the language and this approach takes more time, while the simulation model can be easily built and quickly evaluated using SIMULINK.展开更多
Micro-Opto-Electro-Mechanical Systems(MOEMS)accelerometer is a new type of accelerometer which combines the merits of optical measurement and Micro-Electro-Mechanical Systems(MEMS)to enable high precision,small volume...Micro-Opto-Electro-Mechanical Systems(MOEMS)accelerometer is a new type of accelerometer which combines the merits of optical measurement and Micro-Electro-Mechanical Systems(MEMS)to enable high precision,small volume and anti-electromagnetic disturbance measurement of acceleration.In recent years,with the in-depth research and development of MOEMS accelerometers,the community is flourishing with the possible applications in seismic monitoring,inertial navigation,aerospace and other industrial and military fields.There have been a variety of schemes of MOEMS accelerometers,whereas the performances differ greatly due to different measurement principles and corresponding application requirements.This paper aims to address the pressing issue of the current lack of systematic review of MOEMS accelerometers.According to the optical measurement principle,we divide the MOEMS accelerometers into three categories:the geometric optics based,the wave optics based,and the new optomechanical accelerometers.Regarding the most widely studied category,the wave optics based accelerometers are further divided into four sub-categories,which is based on grating interferometric cavity,Fiber Bragg Grating(FBG),Fabry-Perot cavity,and photonic crystal,respectively.Following a brief introduction to the measurement principles,the typical performances,advantages and disadvantages as well as the potential application scenarios of all kinds of MOEMS accelerometers are discussed on the basis of typical demonstrations.This paper also presents the status and development tendency of MOEMS accelerometers to meet the ever-increasing demand for high-precision acceleration measurement.展开更多
A piezoresistive silicon accelerometer fabricated by a selective,self-stopping porous silicon (PS) etching method using an epitaxial layer for movable microstructures is described and analyzed.The technique is capable...A piezoresistive silicon accelerometer fabricated by a selective,self-stopping porous silicon (PS) etching method using an epitaxial layer for movable microstructures is described and analyzed.The technique is capable of constructing a microstructure precisely.PS is used as a sacrificial layer,and releasing holes are etched in the film.TMAH solution with additional Si powder and (NH_4)_2S_2O_8 is used to remove PS through the small releasing holes without eroding uncovered Al.The designed fabrication process is full compatible with standard CMOS process.展开更多
文摘Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does not represent an important parameter.However,in critical applications,this parameter represents a crucial aspect.One important sensing device used in IoT designs is the accelerometer.In most applications,the response time of the embedded driver software handling this device is generally not analysed and not taken into account.In this paper,we present the design and implementation of a predictable real-time driver stack for a popular accelerometer and gyroscope device family.We provide clear justifications for why this response time is extremely important for critical applications in the acquisition process of such data.We present extensive measurements and experimental results that demonstrate the predictability of our solution,making it suitable for critical real-time systems.
文摘In order to suppress the influence of temperature changes on the performance of accelerometers,a digital quartz resonant accelerometer with low temperature drift is developed using a quartz resonator cluster as a transducer element.In addition,a digital intellectual property(IP) is designed in FPGA to achieve signal processing and fusion of integrated resonators.A testing system for digital quartz resonant accelerometers is established to characterize the performance under different conditions.The scale factor of the accelerometer prototype reaches 3561.63 Hz/g in the range of -1 g to +1 g,and 3542.5 Hz/g in the range of-10 g to+10 g.In different measurement ranges,the linear correlation coefficient R~2 of the accelerometer achieves greater than 0.998.The temperature drift of the accelerometer prototype is tested using a constant temperature test chamber,with a temperature change from -20℃ to 80℃.After temperature-drift compensation,the zero bias temperature coefficient falls to 0.08 mg/℃,and the scale factor temperature coefficient is 65.43 ppm/℃.The experimental results show that the digital quartz resonant accelerometer exhibits excellent sensitivity and low temperature drift.
基金funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number:02/2022/TN.
文摘This study focuses on the design and validation of a behavior classification system for cattle using behavioral data collected through accelerometer sensors.Data collection and behavioral analysis are achieved using machine learning(ML)algorithms through accelerometer sensors.However,behavioral analysis poses challenges due to the complexity of cow activities.The task becomes more challenging in a real-time behavioral analysis system with the requirement for shorter data windows and energy constraints.Shorter windows may lack sufficient information,reducing algorithm performance.Additionally,the sensor’s position on the cowsmay shift during practical use,altering the collected accelerometer data.This study addresses these challenges by employing a 3-s data window to analyze cow behaviors,specifically Feeding,Lying,Standing,and Walking.Data synchronization between accelerometer sensors placed on the neck and leg compensates for the lack of information in short data windows.Features such as the Vector of Dynamic Body Acceleration(VeDBA),Mean,Variance,and Kurtosis are utilized alongside the Decision Tree(DT)algorithm to address energy efficiency and ensure computational effectiveness.This study also evaluates the impact of sensor misalignment on behavior classification.Simulated datasets with varying levels of sensor misalignment were created,and the system’s classification accuracy exceeded 0.95 for the four behaviors across all datasets(including original and simulated misalignment datasets).Sensitivity(Sen)and PPV for all datasets were above 0.9.The study provides farmers and the dairy industry with a practical,energy-efficient system for continuously monitoring cattle behavior to enhance herd productivity while reducing labor costs.
文摘Device-based measurements are recommended to improve population-based physical activity(PA)surveillance.1,2However,implementation remains challenging due to lack of consensus on analytical methods,and the most widely used“generic”(absolute intensity)cut-point approach has limited generalisability to population-level free-living data.Further,current methods generally fail to account for differences in people's physical capacity.
基金Project supported by the National Natural Science Foundation of China(Grant No.32473216)Ningbo Youth Science and Technology Innovation Leading Talent Project(Grant No.2023QL004)。
文摘Vibration detection using sensors with both wide working frequency range,good sensitivity,and other good performances is a topic of great interest in fields such as inertial navigation,deep-sea fishing boat engines condition monitoring,seismic monitoring,attitude,and heading reference system,etc.This paper investigates two 6H-SIC MEMS diaphragms,one triangular and the other square,used in a fiber optic Fabry–Perot(FP)accelerometer in an experimental scenario.The triangular chip shows a wide working frequency range of 630 Hz–5300 Hz,a natural frequency of 44.3 k Hz,and a mechanical sensitivity of 0.154 nm/g.An optimal structure of the square chip used in a probe such as a fiber optic FP accelerometer also shows a wide working frequency range of 120 Hz–2300 Hz;a good sensitivity of 31.5 m V/g,a resonance frequency of7873 Hz,an accuracy of 0.96%F.S.,a frequency measurement error of 1.15%,and an excellent linearity of 0.9995.
文摘Type 2 diabetes(T2D)is a global public health issue.In 2021,537 million adults were diagnosed with T2D,corresponding to 10.5%of adults aged 20 and older.^(1)T2D increases the risks for morbidity,disability,and premature mortality,which increased by 3%between 2000 and 2019.2 Evidence is strong that maintaining a healthy diet,engaging in regular physical activity(PA),and preventing obesity can prevent or delay the incidence of T2D.
基金supported by the National Natural Science Foundation of China(42276199).
文摘In order to get rid of the dependence on high-precision centrifuges in accelerometer nonlinear coefficients calibration,this paper proposes a system-level calibration method for field condition.Firstly,a 42-dimension Kalman filter is constructed to reduce impact brought by turntable.Then,a biaxial rotation path is designed based on the accelerometer output model,including orthogonal 22 positions and tilt 12 positions,which enhances gravity excitation on nonlinear coefficients of accelerometer.Finally,sampling is carried out for calibration and further experiments.The results of static inertial navigation experiments lasting 4000 s show that compared with the traditional method,the proposed method reduces the position error by about 390 m.
基金supported by the National Natural Science Foundation of China(62205377).
文摘A high precision detection technique is analyzed based on the optical micro electro-mechanical system(MEMS)accelerometer with double gratings for noise suppression and scale factor enhancement.The brief sensing model and modulation detection model are built using the phase sensitive detection,and the relationship between stimulated acceleration and system output is given.The schematics of gap modulation and light intensity modulation are analyzed respectively,and the choice of modulation frequency in the optical MEMS accelerometer system is discussed.According to the experimental results,the scale factor is improved from 15.45 V/g with the gap modulation to 18.78 V/g with the light intensity modulation,and the signal to noise ratio is improved from 42.95 dB to 81.73 dB.The overall noise level in the optical MEMS accelerometer is effectively suppressed.
基金supported by the National Key R&D Program of China(2021YFC2501500)National Natural Science Foundation of China(82171476)。
文摘Purpose:The aim of the current study was to investigate the association of accelerometer-measured sleep duration and different intensities of physical activity(PA)with the risk of incident type 2 diabetes in a population-based prospective cohort study.Methods:Altogether,88,000 participants(mean age=62.2±7.9 years,mean±SD)were included from the UK Biobank.Sleep duration(short:<6 h/day;normal:6-8 h/day;long:>8 h/day)and PA of different intensities were measured using a wrist-won accelerometer over a 7-day period between 2013 and 2015.PA was classified according to the median or World Health Organization-recommendation:total volume of PA(high,low),moderate-to-vigorous PA(MVPA)(recommended,not recommended),and light-intensity PA(high,low).Incidence of type 2diabetes was ascertained using hospital records or death registries.Results:During a median follow-up of 7.0 years,1615 incident type 2 diabetes cases were documented.Compared with normal sleep duration,short(hazard ratio(HR)=1.21,95%confidence interval(95%CI):1.03-1.41)but not long sleep duration(HR=1.01,95%CI:0.89-1.15)was associated with excessive type 2 diabetes risk.This increased risk among short sleepers seems to be protected against by PA.Compared with normal sleepers with high or recommended PA,short sleepers with low volume of PA(HR=1.81,95%CI:1.46-2.25),not recommended(below the World Health Organization-recommended level of)MVPA(HR=1.92,95%CI:1.55-2.36),or low light-intensity PA(HR=1.49,95%CI:1.13-1.90)had a higher risk of type 2 diabetes,while short sleepers with a high volume of PA(HR=1.14,95%CI:0.88-1.49),recommended MVPA(HR=1.02,95%CI:0.71-1.48),or high light-intensity PA(HR=1.14,95%CI:0.92-1.41)did not.Conclusion:Accelerometer-measured short but not long sleep duration was associated with a higher risk of incident type 2 diabetes.A higher level of PA,regardless of intensity,potentially ameliorates this excessive risk.
基金Human activity data for the experiments were sourced from the Ethics Council for Grassroots Biomedical Research at Phenikaa University.The data collection adhered to Decision No.476/QD-DHP-HÐÐÐthe Ethics Council for Grassroots Biomedical Research at Phenikaa University(No.023.07.01/DHP-HÐÐÐ,2023 Dec).
文摘Analyzing physical activities through wearable devices is a promising research area for improving health assessment.This research focuses on the development of an affordable and real-time Human Activity Recognition(HAR)system designed to operate on low-performance microcontrollers.The system utilizes data from a bodyworn accelerometer to recognize and classify human activities,providing a cost-effective,easy-to-use,and highly accurate solution.A key challenge addressed in this study is the execution of efficient motion recognition within a resource-constrained environment.The system employs a Random Forest(RF)classifier,which outperforms Gradient Boosting Decision Trees(GBDT),Support Vector Machines(SVM),and K-Nearest Neighbors(KNN)in terms of accuracy and computational efficiency.The proposed features Average absolute deviation(AAD),Standard deviation(STD),Interquartile range(IQR),Range,and Root mean square(RMS).The research has conducted numerous experiments and comparisons to establish optimal parameters for ensuring system effectiveness,including setting a sampling frequency of 50 Hz and selecting an 8-s window size with a 40%overlap between windows.Validation was conducted on both the WISDM public dataset and a self-collected dataset,focusing on five fundamental daily activities:Standing,Sitting,Jogging,Walking,and Walking the stairs.The results demonstrated high recognition accuracy,with the system achieving 96.7%on the WISDM dataset and 97.13%on the collected dataset.This research confirms the feasibility of deploying HAR systems on low-performance microcontrollers and highlights the system’s potential applications in patient support,rehabilitation,and elderly care.
基金Project supported by the National Natural Science Foundation of China (Grant No.62071118)the Primary Research & Development Plan of Jiangsu Province (Grant No.BE2021004-3)。
文摘The nitrogen-vacancy (NV) center quantum systems have emerged as versatile tools in the field of precision measurement because of their high sensitivity in spin state detection and miniaturization potential as solid-state platforms.In this paper,an acceleration sensing scheme based on NV spin–strain coupling is proposed,which can effectively eliminate the influence of the stray noise field introduced by traditional mechanical schemes.Through the finite element simulation,it is found that the measurement bandwidth of this ensemble NV spin system ranges from 3 kHz to hundreds of kHz with structure√optimization.The required power is at the sub-μW level,corresponding to a noise-limited sensitivity of 6.7×10^(-5) /√Hz.Compared with other types of accelerometers,this micro-sized diamond sensor proposed here has low power consumption,exquisite sensitivity,and integration potential.This research opens a fresh perspective to realize an accelerometer with appealing comprehensive performance applied in biomechanics and inertial measurement fields.
文摘Purpose: This study focused on maintaining and improving the walking function of late-stage older individuals while longitudinally tracking the effects of regular exercise programs in a day-care service specialized for preventive care over 5 years, using detailed gait function measurements with an accelerometer-based system. Methods: Seventy individuals (17 male and 53 female) of a daycare service in Tokyo participated in a weekly exercise program, meeting 1 - 2 times. The average age of the participants at the start of the program was 81.4 years. Gait function, including gait speed, stride length, root mean square (RMS) of acceleration, gait cycle time and its standard deviation, and left-right difference in stance time, was evaluated every 6 months. Results: Gait speed and stride length improved considerably within six months of starting the exercise program, confirming an initial improvement in gait function. This suggests that regular exercise programs can maintain or improve gait function even age groups that predictably have a gradual decline in gait ability due to enhanced age. In the long term, many indicators tended to approach baseline values. However, the exercise program seemingly counteracts age-related changes in gait function and maintains a certain level of function. Conclusions: While a decline in gait ability with aging is inevitable, establishing appropriate exercise habits in late-stage older individuals may contribute to long-term maintenance of gait function.
基金the National Natural Science Foundation of China(No.50775209)NCET~~
文摘A calculation and test method for the natural frequency of a high-g micro accelerometer with complex structures is presented. A universal formula for natural frequency, which can significantly simplify the structural design process, is deduced and confirmed by experiment. A simplified analytical model is established to describe the accelerometer's mechanical behavior and deduce the formula for the natural frequency. Finite element modeling is also conducted to evaluate the natural frequency of the micro-accelerometer and verify the formula. The results obtained from the analytical model and the finite element simulation show good agreement. Finally, a shock comparison method designed for acquiring the high frequency characteristics of the accelerometer is introduced to verify the formula by testing its actual natural frequency.
文摘Resonant accelerometer is designed,which includes two double-ended tuning forks,a proof mass,four-leverage system amplifying inertial force,and drive/sense combs.Each tuning fork is electrostatically actuated and sensed at resonance using comb electrodes.The device is fabricated using MEMS bulk-silicon technology,whose sensitive degree is 27 3Hz/g,and the resolution is 167 8μg.
文摘A novel capacitive biaxial microaccelerometer with a highly symmetrical microstructure is developed. The sensor is composed of a single seismic mass, grid strip, supporting beam, joint beam, and damping adjusting combs. The sensing method of changing capacitance area is used in the design,which depresses the requirement of the DRIE process, and de- creases electronic noise by increasing sensing voltage to improve the resolution. The parameters and characteristics of the biaxial microaccelerometer are discussed with the FEM tool ANSYS. The simulated results show that the transverse sensitivity of the sensor is equal to zero. The testing devices based on the slide-film damping effect are fabricated, and the testing quality factor is 514, which shows that the designed structure can improve the resolution and proves the feasibility of the designed process.
文摘In allusion to the limitations of the traditional attitude measurement system consisting of a three-axis magnetic sensor and two accelerometers on high-spinning projectile, a new scheme comprised of two magnetic sensors and two accelerometers installed in a particular way is given. The configuration of the sensors is described. The calculation method and the mathematical model of the projectile attitude based on the sensor configuration are discussed. The basic calculation method including the Magsonde Window, the proof of the ratios of maximums and minimums and the calculation of the attitude angles are analyzed in theory. Finally, the system is simulated under the given conditions. The simulation result indicates that the estimated attitude angles are in agreement with the true attitude angles.
文摘A tunneling accelerometer is fabricated and characterized based on the extension of the silicon-glass anodic-bonding and deep etching releasing process provided by Peking University.The tunneling current under open loop operation is tested in the air by HP4145B semiconductor analyzer,which verifies the presence of tunneling current and the exponential relationship between tunneling gap and tunneling current.The tunneling barrier is extrapolated to be from 1.182 to 2.177eV.The threshold voltages are tested to be 14~16V for most of the devices.The threshold voltages under -1,0,and +1g are tested,respectively,which shows the sensitivity of the accelerometer is about 87mV/g.
文摘This paper presents two approaches for system-level simulation of force-balance accelerometers. The derivation of the system-level model is elaborated and simulation results are obtained from the implementation of those strategies on the fabricated silicon force-balance MEMS accelerometer. The mathematical model presented is implemented in VHDL- AMS and SIMULINK TM,respectively. The simulation results from the two approaches are compared and show a slight difference. Using VHDL-AMS is flexible,reusable,and more accurate. But there is not a mature solver developed for the language and this approach takes more time, while the simulation model can be easily built and quickly evaluated using SIMULINK.
基金supports from National Natural Science Foundation of China(No.62004166)Fundamental Research Funds for the Central Universities(No.31020190QD027)+2 种基金Natural Science Basic Research Program of Shaanxi(Program No.2020JQ-199)China National Postdoctoral Program for Innovative Talents(No.BX20200279)Key Research and Development Program of Shaanxi Province(2020GXLH-Z-027,2020ZDLGY04-08).
文摘Micro-Opto-Electro-Mechanical Systems(MOEMS)accelerometer is a new type of accelerometer which combines the merits of optical measurement and Micro-Electro-Mechanical Systems(MEMS)to enable high precision,small volume and anti-electromagnetic disturbance measurement of acceleration.In recent years,with the in-depth research and development of MOEMS accelerometers,the community is flourishing with the possible applications in seismic monitoring,inertial navigation,aerospace and other industrial and military fields.There have been a variety of schemes of MOEMS accelerometers,whereas the performances differ greatly due to different measurement principles and corresponding application requirements.This paper aims to address the pressing issue of the current lack of systematic review of MOEMS accelerometers.According to the optical measurement principle,we divide the MOEMS accelerometers into three categories:the geometric optics based,the wave optics based,and the new optomechanical accelerometers.Regarding the most widely studied category,the wave optics based accelerometers are further divided into four sub-categories,which is based on grating interferometric cavity,Fiber Bragg Grating(FBG),Fabry-Perot cavity,and photonic crystal,respectively.Following a brief introduction to the measurement principles,the typical performances,advantages and disadvantages as well as the potential application scenarios of all kinds of MOEMS accelerometers are discussed on the basis of typical demonstrations.This paper also presents the status and development tendency of MOEMS accelerometers to meet the ever-increasing demand for high-precision acceleration measurement.
文摘A piezoresistive silicon accelerometer fabricated by a selective,self-stopping porous silicon (PS) etching method using an epitaxial layer for movable microstructures is described and analyzed.The technique is capable of constructing a microstructure precisely.PS is used as a sacrificial layer,and releasing holes are etched in the film.TMAH solution with additional Si powder and (NH_4)_2S_2O_8 is used to remove PS through the small releasing holes without eroding uncovered Al.The designed fabrication process is full compatible with standard CMOS process.