Investment casting has been widely recognized as the best option in producing TiAl components with key benefits of accuracy,versatility and integrity.The collapsibility of ceramic moulds for investment casting is crit...Investment casting has been widely recognized as the best option in producing TiAl components with key benefits of accuracy,versatility and integrity.The collapsibility of ceramic moulds for investment casting is critical in the manufacturing process of TiAl components due to TiAl's intrinsic brittleness at room temperature.The aim of the present research is to provide a method for production of TiAl components by investment casting in ZrO2 ceramic moulds with improved collapsibility.Slurries prepared with high polymer additions were utilized during the preparation of ceramic moulds.The stress/strain curves obtained from green and baked ceramic moulds demonstrate that the green strength was increased with the application of high polymer,while baked strength decreased,thus the collapsibility of ceramic moulds was improved.It is suggested that this result is related to the burn-out of high polymer which left a lot of cavities.The experimental findings were also verified by the investment casting of "I"-shaped TiAl components.展开更多
The interfacial reaction between Ti-6Al-4V alloy and ZrO2 ceramic mold with zirconia sol binder was investigated by keeping the 12 g alloy melt in a vacuum induction furnace for 15 s.The microstructures,element distri...The interfacial reaction between Ti-6Al-4V alloy and ZrO2 ceramic mold with zirconia sol binder was investigated by keeping the 12 g alloy melt in a vacuum induction furnace for 15 s.The microstructures,element distribution and phase constitution of the interface were identified by optical microscopy(OM),scanning electron microscopy(SEM)equipped with energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The results show that the whole interface reaction layer can be divided into three regions:metal penetration layer,transition layer,and hardened layer according to the structure morphology,which has the characteristics of severe metal penetration,finer lamellar,and coarse oxygen-richαphase,respectively.The erosion of the alloy melt on the ceramic mold promotes the decomposition of zirconia,which leads to the increase of local Zr concentration,greatly increasing the activity coefficient of Ti,aggravating the occurrence of interfacial reaction.Thus,the interfacial reaction shows the characteristics of chain reaction.When the oxygen released by the dissolution of zirconia exceeds the local solid solubility,it precipitates in the form of bubbles,resulting in blowholes at the interface.The result also indicates that the zirconia mold with zirconia sol binder is not suitable for pouring heavy titanium alloy castings.展开更多
The ZrO2 ceranfic was successfully jointed to stainless steel by vacuum brazing with active filler metal. The AgCuTi active filler metal was used and the joining was performed at a temperature of 850 ℃ for 10 rain. T...The ZrO2 ceranfic was successfully jointed to stainless steel by vacuum brazing with active filler metal. The AgCuTi active filler metal was used and the joining was performed at a temperature of 850 ℃ for 10 rain. The microstructures of the joints were characterized by metallographic microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Metallographic microscopy analysis shows that the morphology of the cross section was a sandwich structure and the TiO is observed in the surface of ZrO2/ stainless steel. The diffusion and enrichment of the elements are the key roles in the brazing of ZrO2 ceramic and stainless steel. The formation of TiCu compounds inhibited the further diffusion of titanium into stainless steel or the ZrO2 ceramic to form TiO compound. In the experimental conditions, the average tensile strength is 80MPa for the joint of ZrO2 ceramic / AgCuTi/ stainless steel systems. A complete joint is formed between the ZrO2 ceramic and stainless steel with the leakage rate at the degree of 10 ^-12 Pa · m^3/s.展开更多
With the help of the ceramic foam research efforts and preparation techniques, the ZrO2 polycrystalline ceramic foam catalyst was synthesized, and its characteristics, including the crystal structure, the phase compos...With the help of the ceramic foam research efforts and preparation techniques, the ZrO2 polycrystalline ceramic foam catalyst was synthesized, and its characteristics, including the crystal structure, the phase composition, the acid–base properties, and the microstructure, were analyzed by XRD, SEM, Py-IR, and BET techniques. The performance of the ZrO2 polycrystalline ceramic foam catalyst in a tubular reactor was investigated via biodiesel synthesis using S. wilsoniana oil and methanol. The effects of reaction conditions(i.e., reaction temperature, reaction pressure, and volume ratio of methanol to S. wilsoniana oil) on transesterification efficiency were investigated, and the reaction conditions were optimized using RSM. The optimum reaction temperature, reaction pressure, and volume ratio of methanol to S. wilsoniana oil were determined to be 290 ℃, 10 MPa, and 4:1, respectively. Under this condition, the FAME content in the product oil reached 98.38%. The performance of the ZrO2 polycrystalline ceramic foam catalyst synthesized in this work for biodiesel synthesis from S. wilsoniana oil with a moisture content of 7.1% and an acid value of 130.697 mg KOH/g was examined, and the FAME content in the product oil was found to be 93% and 97.67%, respectively. The FAME content in the product oil exceeded 97% after five consecutive cycles(12 h per cycle of use) of the catalyst. The proposed catalyst represents a new type of solid catalyst with excellent acid resistance, water resistance, esterification efficiency, and catalytic stability.展开更多
ZrO2-Y2O3 ceramic coating was produced by plasma electrolytic oxidation (PEO) on ZAlSil2Cu3Ni2 alloy. The microstructure and phase composition of the coating were investigated by SEM and XRD.: The results show that...ZrO2-Y2O3 ceramic coating was produced by plasma electrolytic oxidation (PEO) on ZAlSil2Cu3Ni2 alloy. The microstructure and phase composition of the coating were investigated by SEM and XRD.: The results show that adding an appropriate amount of yttrium ion can improve the growing rate of ceramic coating at different oxidation stages and decrease arc voltage. The thickness of ZrO2-Y2O3 coating is 16 μn thicker than that of ZrO2 coating and the maximum oxidation rate improves by 0.6 μm/min. In addition, the arc voltage decreases from 227 to 172 V. It can be seen that the rate of oxidation firstly increases to some extent and then decreases with the content of yttrium ion increasing. The growth rate reaches the maximum while the content of yttrium ion is 0.05 g-L-1The maximum thickness is 90 μm.Compared to ZrO2 coating, the micropores of ZrO2-Y2O3 coating are less and the ceramic layer is repeatedly deposited by ZrO2 and Y2O3 ceramic particles. Meanwhile, the binding force between coating and substrate is better and the coating is uniform and compact. The ceramic layer is mainly composed of c-Y0.15Zr0.85O1.93□0.07, m-ZrO2, α-Al2O3, ,γ-Al2O3 and Y2O3. It is indicated that ZrO2 has beert fully stabilized by yttrium ion through the formation of solid solution.展开更多
The thermal barrier coatings with NiCrAlY alloy bonding layer, NiCrAlY Y 2O 3 stabilized ZrO 2 transition layer and Y 2O 3 stabilized ZrO 2 ceramic layer are prepared on nickel alloy substrates using the plasma spray ...The thermal barrier coatings with NiCrAlY alloy bonding layer, NiCrAlY Y 2O 3 stabilized ZrO 2 transition layer and Y 2O 3 stabilized ZrO 2 ceramic layer are prepared on nickel alloy substrates using the plasma spray technique. The relationship among the composition, structure and property of the coatings are investiga ted by means of optical microscope, scanning electronic microscope and the experiments of thermal shock resistance cycling and high temperature oxidation resistance. The results show that the structure design of introdu cing a transition layer between Ni alloy substrate and ZrO 2 ceramic coating guarantees the high quality and properties of the coatings; ZrO 2 coatings doped with a little SiO 2 possesses better thermal shock resistance and more excellent hot corrosion resistance as compared with ZrO 2 coating materials without SiO 2 ;the improvement in performance of ZrO 2 coating doped with SiO 2 is due to forming more dense coating structure by self closing effects of the flaws and pores in the ZrO 2 coatings.展开更多
The tribological properties of ZrO2 ceramic and 1Cr18Ni9Ti stainless steel rubbing pairs were investigated using a special tribo-tester under different concentrations of hydrogen peroxide (H2O2) solution.The compariso...The tribological properties of ZrO2 ceramic and 1Cr18Ni9Ti stainless steel rubbing pairs were investigated using a special tribo-tester under different concentrations of hydrogen peroxide (H2O2) solution.The comparison analyses of the friction coefficients,worn volume rates,worn particles and surface roughness were conducted under the tested conditions.There were significant differences of the tribological properties of the rubbing pairs in the different concentrations H2O2 solution because of oxidation and corrosion.This research has revealed that the main wear mechanisms between the rubbing pairs are severe adhesive wear,abrasive wear and corrosive wear in the H2O2 solution with different concentrations.A model has been established to assess the most suitable concentration of the H2O2 solution for the tribological properties of the rubbing pairs.The result shows that 50% concentration of the H2O2 solution is the most suitable.The assessment result is consistent with the experimental result.It is believed that the knowledge gained in this study is useful for the optimization of the friction pairs in the extreme condition.展开更多
基金supported by the National Natural Science Foundation of China under grant No. 51001040the Specialized Research Fund for the Doctoral Program of Higher Education within project No. 200802130014+1 种基金the Fundamental Research Funds for the Central Universities (grant No. HIT NSRIF.2010116)the Development program for Outstanding Young Teachers in Harbin Institute of Technology (HITQNJS 2009022)
文摘Investment casting has been widely recognized as the best option in producing TiAl components with key benefits of accuracy,versatility and integrity.The collapsibility of ceramic moulds for investment casting is critical in the manufacturing process of TiAl components due to TiAl's intrinsic brittleness at room temperature.The aim of the present research is to provide a method for production of TiAl components by investment casting in ZrO2 ceramic moulds with improved collapsibility.Slurries prepared with high polymer additions were utilized during the preparation of ceramic moulds.The stress/strain curves obtained from green and baked ceramic moulds demonstrate that the green strength was increased with the application of high polymer,while baked strength decreased,thus the collapsibility of ceramic moulds was improved.It is suggested that this result is related to the burn-out of high polymer which left a lot of cavities.The experimental findings were also verified by the investment casting of "I"-shaped TiAl components.
基金the National Natural Science Foundation of China(Grant No.51871184)the Natural Science Foundation of Shandong Province(Grant No.ZR2017MEE038)China Postdoctoral Science Foundation(No.2018M642683)。
文摘The interfacial reaction between Ti-6Al-4V alloy and ZrO2 ceramic mold with zirconia sol binder was investigated by keeping the 12 g alloy melt in a vacuum induction furnace for 15 s.The microstructures,element distribution and phase constitution of the interface were identified by optical microscopy(OM),scanning electron microscopy(SEM)equipped with energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The results show that the whole interface reaction layer can be divided into three regions:metal penetration layer,transition layer,and hardened layer according to the structure morphology,which has the characteristics of severe metal penetration,finer lamellar,and coarse oxygen-richαphase,respectively.The erosion of the alloy melt on the ceramic mold promotes the decomposition of zirconia,which leads to the increase of local Zr concentration,greatly increasing the activity coefficient of Ti,aggravating the occurrence of interfacial reaction.Thus,the interfacial reaction shows the characteristics of chain reaction.When the oxygen released by the dissolution of zirconia exceeds the local solid solubility,it precipitates in the form of bubbles,resulting in blowholes at the interface.The result also indicates that the zirconia mold with zirconia sol binder is not suitable for pouring heavy titanium alloy castings.
基金supported by the National Key R&D Program of China(Grant No.2017YFB0305700)
文摘The ZrO2 ceranfic was successfully jointed to stainless steel by vacuum brazing with active filler metal. The AgCuTi active filler metal was used and the joining was performed at a temperature of 850 ℃ for 10 rain. The microstructures of the joints were characterized by metallographic microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Metallographic microscopy analysis shows that the morphology of the cross section was a sandwich structure and the TiO is observed in the surface of ZrO2/ stainless steel. The diffusion and enrichment of the elements are the key roles in the brazing of ZrO2 ceramic and stainless steel. The formation of TiCu compounds inhibited the further diffusion of titanium into stainless steel or the ZrO2 ceramic to form TiO compound. In the experimental conditions, the average tensile strength is 80MPa for the joint of ZrO2 ceramic / AgCuTi/ stainless steel systems. A complete joint is formed between the ZrO2 ceramic and stainless steel with the leakage rate at the degree of 10 ^-12 Pa · m^3/s.
基金the financial support from the National Natural Science Foundation of China (No. 21266022, No. 21466022)the National High Technology Research and Development Program 863 (2014AA022002, 2012AA101800-03, 2012AA021205-6, 2012AA021704)+1 种基金the Key Programs of the National Laboratory (No. SKLFZZB-201312)the International Science & Technology Cooperation Program of China (2014DFA61040)
文摘With the help of the ceramic foam research efforts and preparation techniques, the ZrO2 polycrystalline ceramic foam catalyst was synthesized, and its characteristics, including the crystal structure, the phase composition, the acid–base properties, and the microstructure, were analyzed by XRD, SEM, Py-IR, and BET techniques. The performance of the ZrO2 polycrystalline ceramic foam catalyst in a tubular reactor was investigated via biodiesel synthesis using S. wilsoniana oil and methanol. The effects of reaction conditions(i.e., reaction temperature, reaction pressure, and volume ratio of methanol to S. wilsoniana oil) on transesterification efficiency were investigated, and the reaction conditions were optimized using RSM. The optimum reaction temperature, reaction pressure, and volume ratio of methanol to S. wilsoniana oil were determined to be 290 ℃, 10 MPa, and 4:1, respectively. Under this condition, the FAME content in the product oil reached 98.38%. The performance of the ZrO2 polycrystalline ceramic foam catalyst synthesized in this work for biodiesel synthesis from S. wilsoniana oil with a moisture content of 7.1% and an acid value of 130.697 mg KOH/g was examined, and the FAME content in the product oil was found to be 93% and 97.67%, respectively. The FAME content in the product oil exceeded 97% after five consecutive cycles(12 h per cycle of use) of the catalyst. The proposed catalyst represents a new type of solid catalyst with excellent acid resistance, water resistance, esterification efficiency, and catalytic stability.
基金Funded by the National Natural Science Foundation of China(No.51401155)the School Foundation(No.XAGDXJJ1012)The Open Fund of Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices(No.ZSKJ201416)
文摘ZrO2-Y2O3 ceramic coating was produced by plasma electrolytic oxidation (PEO) on ZAlSil2Cu3Ni2 alloy. The microstructure and phase composition of the coating were investigated by SEM and XRD.: The results show that adding an appropriate amount of yttrium ion can improve the growing rate of ceramic coating at different oxidation stages and decrease arc voltage. The thickness of ZrO2-Y2O3 coating is 16 μn thicker than that of ZrO2 coating and the maximum oxidation rate improves by 0.6 μm/min. In addition, the arc voltage decreases from 227 to 172 V. It can be seen that the rate of oxidation firstly increases to some extent and then decreases with the content of yttrium ion increasing. The growth rate reaches the maximum while the content of yttrium ion is 0.05 g-L-1The maximum thickness is 90 μm.Compared to ZrO2 coating, the micropores of ZrO2-Y2O3 coating are less and the ceramic layer is repeatedly deposited by ZrO2 and Y2O3 ceramic particles. Meanwhile, the binding force between coating and substrate is better and the coating is uniform and compact. The ceramic layer is mainly composed of c-Y0.15Zr0.85O1.93□0.07, m-ZrO2, α-Al2O3, ,γ-Al2O3 and Y2O3. It is indicated that ZrO2 has beert fully stabilized by yttrium ion through the formation of solid solution.
文摘The thermal barrier coatings with NiCrAlY alloy bonding layer, NiCrAlY Y 2O 3 stabilized ZrO 2 transition layer and Y 2O 3 stabilized ZrO 2 ceramic layer are prepared on nickel alloy substrates using the plasma spray technique. The relationship among the composition, structure and property of the coatings are investiga ted by means of optical microscope, scanning electronic microscope and the experiments of thermal shock resistance cycling and high temperature oxidation resistance. The results show that the structure design of introdu cing a transition layer between Ni alloy substrate and ZrO 2 ceramic coating guarantees the high quality and properties of the coatings; ZrO 2 coatings doped with a little SiO 2 possesses better thermal shock resistance and more excellent hot corrosion resistance as compared with ZrO 2 coating materials without SiO 2 ;the improvement in performance of ZrO 2 coating doped with SiO 2 is due to forming more dense coating structure by self closing effects of the flaws and pores in the ZrO 2 coatings.
基金supported by the Key Basic Research Program of China(Grant No.2007CB607603)the Program for New Century Excellent Talents in University(Grant No.NCET-12-0910)
文摘The tribological properties of ZrO2 ceramic and 1Cr18Ni9Ti stainless steel rubbing pairs were investigated using a special tribo-tester under different concentrations of hydrogen peroxide (H2O2) solution.The comparison analyses of the friction coefficients,worn volume rates,worn particles and surface roughness were conducted under the tested conditions.There were significant differences of the tribological properties of the rubbing pairs in the different concentrations H2O2 solution because of oxidation and corrosion.This research has revealed that the main wear mechanisms between the rubbing pairs are severe adhesive wear,abrasive wear and corrosive wear in the H2O2 solution with different concentrations.A model has been established to assess the most suitable concentration of the H2O2 solution for the tribological properties of the rubbing pairs.The result shows that 50% concentration of the H2O2 solution is the most suitable.The assessment result is consistent with the experimental result.It is believed that the knowledge gained in this study is useful for the optimization of the friction pairs in the extreme condition.