Non-Interactive Zero-Knowledge(NIZK for short) proofs are fascinating and extremely useful in many security protocols. In this paper,a new group signature scheme,decisional linear assumption group signature(DLAGS for ...Non-Interactive Zero-Knowledge(NIZK for short) proofs are fascinating and extremely useful in many security protocols. In this paper,a new group signature scheme,decisional linear assumption group signature(DLAGS for short) with NIZK proofs is proposed which can prove and sign the multiple values rather than individual bits based on DLIN assumption. DLAGS does not need to interact between the verifier and issuer,which can decrease the communication times and storage cost compared with the existing interactive group signature schemes. We prove and sign the blocks of messages instead of limiting the proved message to only one bit(0 or 1) in the conventional non-interactive zero-knowledge proof system,and we also prove that our scheme satisfy the property of anonymity,unlinkability and traceability. Finally,our scheme is compared with the other scheme(Benoitt's scheme) which is also based on the NIZK proofs system and the DLIN assumption,and the results show that our scheme requires fewer members of groups and computational times.展开更多
Since transactions in blockchain are based on public ledger verification,this raises security concerns about privacy protection.And it will cause the accumulation of data on the chain and resulting in the low efficien...Since transactions in blockchain are based on public ledger verification,this raises security concerns about privacy protection.And it will cause the accumulation of data on the chain and resulting in the low efficiency of block verification,when the whole transaction on the chain is verified.In order to improve the efficiency and privacy protection of block data verification,this paper proposes an efficient block verification mechanism with privacy protection based on zeroknowledge proof(ZKP),which not only protects the privacy of users but also improves the speed of data block verification.There is no need to put the whole transaction on the chain when verifying block data.It just needs to generate the ZKP and root hash with the transaction information,then save them to the smart contract for verification.Moreover,the ZKP verification in smart contract is carried out to realize the privacy protection of the transaction and efficient verification of the block.When the data is validated,the buffer accepts the complete transaction,updates the transaction status in the cloud database,and packages up the chain.So,the ZKP strengthens the privacy protection ability of blockchain,and the smart contracts save the time cost of block verification.展开更多
The differences among the extended Canetti & Krawezyk 2007 model (ECK2007) and other four models, i.e., the Bellare & Rogaway (1993, 1995)models (BR93,BR95), the Bellare, Pointcheval & Rogaway (2000) model ...The differences among the extended Canetti & Krawezyk 2007 model (ECK2007) and other four models, i.e., the Bellare & Rogaway (1993, 1995)models (BR93,BR95), the Bellare, Pointcheval & Rogaway (2000) model (BPR2000) and the Canetti & Krawczyk (2001) model (CK2001) are given. The relative strength of security among these models is analyzed. To support the implication or non-implication relation among these models, the formal proof or the counter-example is provided.展开更多
Provable security has become a popular approach for analyzing the security of cryptographic protocols.However,writing and verifying proofs by hand are prone to errors.This paper advocates the automatic security proof ...Provable security has become a popular approach for analyzing the security of cryptographic protocols.However,writing and verifying proofs by hand are prone to errors.This paper advocates the automatic security proof framework with sequences of games.We make slight modifications to Blanchet's calculus to make it easy for parsing the initial game.The main contribution of this work is that it introduces algebraic properties with observational equivalences to automatic security proofs,and thus can deal with some practical cryptographic schemes with hard problems.We illustrate the use of algebraic properties in the framework by proving the semantic security of the ElGamal encryption scheme.展开更多
A zero-knowledge proof or protocol is a cryptographic technique for verifying private data without revealing it in its clear form.In this paper,we evaluate the potential for zero-knowledge distributed ledger technolog...A zero-knowledge proof or protocol is a cryptographic technique for verifying private data without revealing it in its clear form.In this paper,we evaluate the potential for zero-knowledge distributed ledger technology to alleviate asymmetry of information in the asset-backed securitization market.To frame this inquiry,we conducted market data analyses,a review of prior literature,stakeholder interviews with investors,originators and security issuers and collaboration with blockchain engineers and researchers.We introduce a new system which could enable all market participants in the securitization lifecycle(e.g.investors,rating agencies,regulators and security issuers)to interact on a unique decentralized platform while maintaining the privacy of loan-level data,therefore providing the industry with timely analytics and performance data.Our platform is powered by zkLedger(Narula et al.2018),a zero-knowledge protocol developed by the MIT Media Lab and the first system that enables participants of a distributed ledger to run publicly verifiable analytics on masked data.展开更多
Semi-device-independent quantum key distribution (SDI-QKD) has been proposed by applying the quantum dimension correlation, and the security relies on the violation of quantum dimension witness inequalities. We prov...Semi-device-independent quantum key distribution (SDI-QKD) has been proposed by applying the quantum dimension correlation, and the security relies on the violation of quantum dimension witness inequalities. We prove the security of the SDI-QKD protocol under the depolarization channel by considering the quantum dimension witness inequalities and minimum entropy and the specific process of the QKD protocol, combining with a four- quantum-state preparation and three measurement bases. We also provide the relationship between the dimension witness value, the error rate and the security key rate by the numerical simulation.展开更多
With the development of cloud computing technology,more and more data owners upload their local data to the public cloud server for storage and calculation.While this can save customers’operating costs,it also poses ...With the development of cloud computing technology,more and more data owners upload their local data to the public cloud server for storage and calculation.While this can save customers’operating costs,it also poses privacy and security challenges.Such challenges can be solved using secure multi-party computation(SMPC),but this still exposes more security issues.In cloud computing using SMPC,clients need to process their data and submit the processed data to the cloud server,which then performs the calculation and returns the results to each client.Each client and server must be honest.If there is cooperation or dishonest behavior between clients,some clients may profit from it or even disclose the private data of other clients.This paper proposes the SMPC based on a Partially-Homomorphic Encryption(PHE)scheme in which an addition homomorphic encryption algorithm with a lower computational cost is used to ensure data comparability and Zero-Knowledge Proof(ZKP)is used to limit the client’s malicious behavior.In addition,the introduction of Oblivious Transfer(OT)technology also ensures that the semi-honest cloud server knows nothing about private data,so that the cloud server of this scheme can calculate the correct data in the case of malicious participant models and safely return the calculation results to each client.Finally,the security analysis shows that the scheme not only ensures the privacy of participants,but also ensures the fairness of the comparison protocol data.展开更多
A new buyer-seller watermarking protocol is proposed by applying a double encryption method and a novel mechanism of embedding a buyer's watermark. The protocol can effectively prevent against collusion attacks and t...A new buyer-seller watermarking protocol is proposed by applying a double encryption method and a novel mechanism of embedding a buyer's watermark. The protocol can effectively prevent against collusion attacks and the man in the middle attack if the third party is not trusted. Also, based on the proposed scheme for the first-hand transaction, a new buyer-reseller watermarking protocol and a formal multi-party watermarking protocol are also proposed. The proposed buyer-resell watermarking protocol only needs the original seller to provide transfer certificate and encryption-decryption service to support the second-hand transaction, and the multi-party watermarking protocol with distributed certificate authorities can overcome the difficulty in the combination of multicast mechanism with multiple unique watermarks and allow a seller to multicast the watermarked digital contents and key transaction information to n buyers. Furthermore, the idea of zero knowledge proof is also applied into the proposed scheme to allow the seller to take an effective control on the task performed by the third party.展开更多
The authors propose a new protocol for muhizzitem electronic auctions. It has the following advantages: first, the protocol is more applicable and flexible than the previous protocols, in this protocol, each bidder c...The authors propose a new protocol for muhizzitem electronic auctions. It has the following advantages: first, the protocol is more applicable and flexible than the previous protocols, in this protocol, each bidder can decide how many items to buy according to diiferent bidding prices, which are set by the seller at the beginning of the auction; second, privacy is well preserved, no third parties are needed in the protocol and the auction outcome is jointly computed by the bidders on their own without uncovering any additional information.展开更多
This paper considers the existence of 3-round zero-knowledge proof systems for NP. Whether there exist 3-round non-black-box zero-knowledge proof systems for NP language is an open problem. By introducing a new intera...This paper considers the existence of 3-round zero-knowledge proof systems for NP. Whether there exist 3-round non-black-box zero-knowledge proof systems for NP language is an open problem. By introducing a new interactive proof model, we construct a 3-round zero-knowledge proof system for graph 3-coloring under standard assumptions. Our protocol is a non-black-box zero-knowledge proof because we adopt a special strategy to prove the zero-knowledge property. Consequently, our construction shows the existence of 3-round non-black-box zero-knowledge proof for all languages in NP under the DDH assumption.展开更多
The rapid evolution of quantum computing poses significant threats to traditional cryptographic schemes,particularly in Decentralized Finance(DeFi)systems that rely on legacy mechanisms like RSA and ECDSA for digital ...The rapid evolution of quantum computing poses significant threats to traditional cryptographic schemes,particularly in Decentralized Finance(DeFi)systems that rely on legacy mechanisms like RSA and ECDSA for digital identity verification.This paper proposes a quantum-resilient,blockchain-based identity verification framework designed to address critical challenges in privacy preservation,scalability,and post-quantum security.The proposed model integrates Post-quantum Cryptography(PQC),specifically lattice-based cryptographic primitives,with Decentralized Identifiers(DIDs)and Zero-knowledge Proofs(ZKPs)to ensure verifiability,anonymity,and resistance to quantum attacks.A dual-layer architecture is introduced,comprising an identity layer for credential generation and validation,and an application layer for DeFi protocol integration.To evaluate its performance,the framework is tested on multiple real-world DeFi platforms using metrics such as verification latency,throughput,attack resistance,energy efficiency,and quantum attack simulation.The results demonstrate that the proposed framework achieves 90%latency reduction and over 35%throughput improvement compared to traditional blockchain identity solutions.It also exhibits a high quantum resistance score(95/100),with successful secure verification under simulated quantum adversaries.The revocation mechanism—implemented using Merkle-tree-based proofs—achieves average response times under 40 ms,and the system maintains secure operations with energy consumption below 9 J per authentication cycle.Additionally,the paper presents a security and cost tradeoff analysis using ZKP schemes such as Bulletproofs and STARKs,revealing superior bits-per-byte efficiency and reduced proof sizes.Real-world adoption scenarios,including integration with six major DeFi protocols,indicate a 25%increase in verified users and a 15%improvement in Total Value Locked(TVL).The proposed solution is projected to remain secure until 2041(basic version)and 2043(advanced version),ensuring long-term sustainability and future-proofing against evolving quantum threats.This work establishes a scalable,privacy-preserving identity model that aligns with emerging post-quantum security standards for decentralized ecosystems.展开更多
As the demand for cross-departmental data collaboration continues to grow,traditional encryption methods struggle to balance data privacy with computational efficiency.This paper proposes a cross-departmental privacy-...As the demand for cross-departmental data collaboration continues to grow,traditional encryption methods struggle to balance data privacy with computational efficiency.This paper proposes a cross-departmental privacy-preserving computation framework based on BFV homomorphic encryption,threshold decryption,and blockchain technology.The proposed scheme leverages homomorphic encryption to enable secure computations between sales,finance,and taxation departments,ensuring that sensitive data remains encrypted throughout the entire process.A threshold decryption mechanism is employed to prevent single-point data leakage,while blockchain and IPFS are integrated to ensure verifiability and tamper-proof storage of computation results.Experimental results demonstrate that with 5,000 sample data entries,the framework performs efficiently and is highly scalable in key stages such as sales encryption,cost calculation,and tax assessment,thereby validating its practical feasibility and security.展开更多
The advancement of 6G wireless communication technology has facilitated the integration of Vehicular Ad-hoc Networks(VANETs).However,the messages transmitted over the public channel in the open and dynamic VANETs are ...The advancement of 6G wireless communication technology has facilitated the integration of Vehicular Ad-hoc Networks(VANETs).However,the messages transmitted over the public channel in the open and dynamic VANETs are vulnerable to malicious attacks.Although numerous researchers have proposed authentication schemes to enhance the security of Vehicle-to-Vehicle(V2V)communication,most existing methodologies face two significant challenges:(1)the majority of the schemes are not lightweight enough to support realtime message interaction among vehicles;(2)the sensitive information like identity and position is at risk of being compromised.To tackle these issues,we propose a lightweight dual authentication protocol for V2V communication based on Physical Unclonable Function(PUF).The proposed scheme accomplishes dual authentication between vehicles by the combination of Zero-Knowledge Proof(ZKP)and MASK function.The security analysis proves that our scheme provides both anonymous authentication and information unlinkability.Additionally,the performance analysis demonstrates that the computation overhead of our scheme is approximately reduced 23.4% compared to the state-of-the-art schemes.The practical simulation conducted in a 6G network environment demonstrates the feasibility of 6G-based VANETs and their potential for future advancements.展开更多
Interactive proof and zero-knowledge proof systems are two important concepts in cryptography and complexity theory. In the past two decades, a great number of interactive proof and zero-knowledge proof protocols have...Interactive proof and zero-knowledge proof systems are two important concepts in cryptography and complexity theory. In the past two decades, a great number of interactive proof and zero-knowledge proof protocols have been designed and applied in practice. In this paper, a simple memorizable zero-knowledge protocol is proposed for graph non-isomorphism problem, based on the memorizable interactive proof system, which is extended from the original definition of interactive proof and is more applicable in reality. Keywords interactive proof - zero-knowledge proof - memorizable interactive proof - memorizable zero-knowledge proof This work was supported by the ministry of Science and Technology of China (Grant No.2001CCA03000), and the National Natural Science Foundation of China (Grant No.60273045).Ning Chen received his B.S. degree from Fudan University in 2001. Now he is a master candidate of Department of Computer Science, Fudan University. His research interests include computational complexity, computational cryptography, algorithm design and analysis.Jia-Wei Rong received her B.S. degree from Fudan University in 2002. Now she is a master candidate of Department of Computer Science, Fudan University. Her research interests include computational cryptography, machine learning, artificial intelligence.展开更多
Blockchains are widely used because of their openness,transparency,nontampering and decentralization.However,there is a high risk of information leakage when trading on blockchain,and the existing anonymous trading sc...Blockchains are widely used because of their openness,transparency,nontampering and decentralization.However,there is a high risk of information leakage when trading on blockchain,and the existing anonymous trading schemes still have some problems.To meet the high requirement of anonymity,the cost of proof submitted by the user is too large,which does not apply to blockchain storage.Meanwhile,transaction verification takes too long to ensure the legitimacy of the transaction.To solve these problems,this paper presents a novel anonymous trading scheme named Block Maze Smart Contract(BMSC)based on the zeroknowledge proof system zk-SNARKs to propose efficiency.This scheme can hide account balances,transaction amounts,and the transfer relationships between transaction parties while preventing overspending attacks and double-spending attacks.Compared with other anonymous schemes,this scheme has less cost of proof and takes less time for transaction verification while meeting the high requirements of anonymity and security.展开更多
基金supported by the National High-Tech Research and Development Plan of China under Grant Nos.863-317-01- 04-99, 2009AA01Z122 (863)the Natural Science Foundation of Shenyang City of China under Grant No. F10-205-1-12
文摘Non-Interactive Zero-Knowledge(NIZK for short) proofs are fascinating and extremely useful in many security protocols. In this paper,a new group signature scheme,decisional linear assumption group signature(DLAGS for short) with NIZK proofs is proposed which can prove and sign the multiple values rather than individual bits based on DLIN assumption. DLAGS does not need to interact between the verifier and issuer,which can decrease the communication times and storage cost compared with the existing interactive group signature schemes. We prove and sign the blocks of messages instead of limiting the proved message to only one bit(0 or 1) in the conventional non-interactive zero-knowledge proof system,and we also prove that our scheme satisfy the property of anonymity,unlinkability and traceability. Finally,our scheme is compared with the other scheme(Benoitt's scheme) which is also based on the NIZK proofs system and the DLIN assumption,and the results show that our scheme requires fewer members of groups and computational times.
基金This work was supported by China’s National Natural Science Foundation(No.62072249,62072056).Jin Wang and Yongjun Ren received the grant and the URLs to sponsors’websites are https://www.nsfc.gov.cn/.This work was also funded by the Researchers Supporting Project No.(RSP-2021/102)King Saud University,Riyadh,Saudi Arabia.
文摘Since transactions in blockchain are based on public ledger verification,this raises security concerns about privacy protection.And it will cause the accumulation of data on the chain and resulting in the low efficiency of block verification,when the whole transaction on the chain is verified.In order to improve the efficiency and privacy protection of block data verification,this paper proposes an efficient block verification mechanism with privacy protection based on zeroknowledge proof(ZKP),which not only protects the privacy of users but also improves the speed of data block verification.There is no need to put the whole transaction on the chain when verifying block data.It just needs to generate the ZKP and root hash with the transaction information,then save them to the smart contract for verification.Moreover,the ZKP verification in smart contract is carried out to realize the privacy protection of the transaction and efficient verification of the block.When the data is validated,the buffer accepts the complete transaction,updates the transaction status in the cloud database,and packages up the chain.So,the ZKP strengthens the privacy protection ability of blockchain,and the smart contracts save the time cost of block verification.
文摘The differences among the extended Canetti & Krawezyk 2007 model (ECK2007) and other four models, i.e., the Bellare & Rogaway (1993, 1995)models (BR93,BR95), the Bellare, Pointcheval & Rogaway (2000) model (BPR2000) and the Canetti & Krawczyk (2001) model (CK2001) are given. The relative strength of security among these models is analyzed. To support the implication or non-implication relation among these models, the formal proof or the counter-example is provided.
基金National High Technical Research and Development Program of China(863 program)under Grant No. 2007AA01Z471
文摘Provable security has become a popular approach for analyzing the security of cryptographic protocols.However,writing and verifying proofs by hand are prone to errors.This paper advocates the automatic security proof framework with sequences of games.We make slight modifications to Blanchet's calculus to make it easy for parsing the initial game.The main contribution of this work is that it introduces algebraic properties with observational equivalences to automatic security proofs,and thus can deal with some practical cryptographic schemes with hard problems.We illustrate the use of algebraic properties in the framework by proving the semantic security of the ElGamal encryption scheme.
基金We received funding solely from our institution to perform this research.
文摘A zero-knowledge proof or protocol is a cryptographic technique for verifying private data without revealing it in its clear form.In this paper,we evaluate the potential for zero-knowledge distributed ledger technology to alleviate asymmetry of information in the asset-backed securitization market.To frame this inquiry,we conducted market data analyses,a review of prior literature,stakeholder interviews with investors,originators and security issuers and collaboration with blockchain engineers and researchers.We introduce a new system which could enable all market participants in the securitization lifecycle(e.g.investors,rating agencies,regulators and security issuers)to interact on a unique decentralized platform while maintaining the privacy of loan-level data,therefore providing the industry with timely analytics and performance data.Our platform is powered by zkLedger(Narula et al.2018),a zero-knowledge protocol developed by the MIT Media Lab and the first system that enables participants of a distributed ledger to run publicly verifiable analytics on masked data.
基金Supported by the National Basic Research Program of China under Grant No 2013CB338002the National Natural Science Foundation of China under Grant Nos 11304397 and 61505261
文摘Semi-device-independent quantum key distribution (SDI-QKD) has been proposed by applying the quantum dimension correlation, and the security relies on the violation of quantum dimension witness inequalities. We prove the security of the SDI-QKD protocol under the depolarization channel by considering the quantum dimension witness inequalities and minimum entropy and the specific process of the QKD protocol, combining with a four- quantum-state preparation and three measurement bases. We also provide the relationship between the dimension witness value, the error rate and the security key rate by the numerical simulation.
基金supported by the National Natural Science Foundation of China under Grant No.(62202118.61962009)And in part by Natural Science Foundation of Shandong Province(ZR2021MF086)+1 种基金And in part by Top Technology Talent Project from Guizhou Education Department(Qian jiao ji[2022]073)And in part by Foundation of Guangxi Key Laboratory of Cryptography and Information Security(GCIS202118).
文摘With the development of cloud computing technology,more and more data owners upload their local data to the public cloud server for storage and calculation.While this can save customers’operating costs,it also poses privacy and security challenges.Such challenges can be solved using secure multi-party computation(SMPC),but this still exposes more security issues.In cloud computing using SMPC,clients need to process their data and submit the processed data to the cloud server,which then performs the calculation and returns the results to each client.Each client and server must be honest.If there is cooperation or dishonest behavior between clients,some clients may profit from it or even disclose the private data of other clients.This paper proposes the SMPC based on a Partially-Homomorphic Encryption(PHE)scheme in which an addition homomorphic encryption algorithm with a lower computational cost is used to ensure data comparability and Zero-Knowledge Proof(ZKP)is used to limit the client’s malicious behavior.In addition,the introduction of Oblivious Transfer(OT)technology also ensures that the semi-honest cloud server knows nothing about private data,so that the cloud server of this scheme can calculate the correct data in the case of malicious participant models and safely return the calculation results to each client.Finally,the security analysis shows that the scheme not only ensures the privacy of participants,but also ensures the fairness of the comparison protocol data.
基金Internation al S&T Cooperation Project from National Ministry of Science and Technology(2006D FA73180)Research Fund for the Doc toral Program of Higher Education of China (20060497005).
文摘A new buyer-seller watermarking protocol is proposed by applying a double encryption method and a novel mechanism of embedding a buyer's watermark. The protocol can effectively prevent against collusion attacks and the man in the middle attack if the third party is not trusted. Also, based on the proposed scheme for the first-hand transaction, a new buyer-reseller watermarking protocol and a formal multi-party watermarking protocol are also proposed. The proposed buyer-resell watermarking protocol only needs the original seller to provide transfer certificate and encryption-decryption service to support the second-hand transaction, and the multi-party watermarking protocol with distributed certificate authorities can overcome the difficulty in the combination of multicast mechanism with multiple unique watermarks and allow a seller to multicast the watermarked digital contents and key transaction information to n buyers. Furthermore, the idea of zero knowledge proof is also applied into the proposed scheme to allow the seller to take an effective control on the task performed by the third party.
基金Supported bythe National Natural Science Foundationof China (90104035)
文摘The authors propose a new protocol for muhizzitem electronic auctions. It has the following advantages: first, the protocol is more applicable and flexible than the previous protocols, in this protocol, each bidder can decide how many items to buy according to diiferent bidding prices, which are set by the seller at the beginning of the auction; second, privacy is well preserved, no third parties are needed in the protocol and the auction outcome is jointly computed by the bidders on their own without uncovering any additional information.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60573052 and 90304013)
文摘This paper considers the existence of 3-round zero-knowledge proof systems for NP. Whether there exist 3-round non-black-box zero-knowledge proof systems for NP language is an open problem. By introducing a new interactive proof model, we construct a 3-round zero-knowledge proof system for graph 3-coloring under standard assumptions. Our protocol is a non-black-box zero-knowledge proof because we adopt a special strategy to prove the zero-knowledge property. Consequently, our construction shows the existence of 3-round non-black-box zero-knowledge proof for all languages in NP under the DDH assumption.
文摘The rapid evolution of quantum computing poses significant threats to traditional cryptographic schemes,particularly in Decentralized Finance(DeFi)systems that rely on legacy mechanisms like RSA and ECDSA for digital identity verification.This paper proposes a quantum-resilient,blockchain-based identity verification framework designed to address critical challenges in privacy preservation,scalability,and post-quantum security.The proposed model integrates Post-quantum Cryptography(PQC),specifically lattice-based cryptographic primitives,with Decentralized Identifiers(DIDs)and Zero-knowledge Proofs(ZKPs)to ensure verifiability,anonymity,and resistance to quantum attacks.A dual-layer architecture is introduced,comprising an identity layer for credential generation and validation,and an application layer for DeFi protocol integration.To evaluate its performance,the framework is tested on multiple real-world DeFi platforms using metrics such as verification latency,throughput,attack resistance,energy efficiency,and quantum attack simulation.The results demonstrate that the proposed framework achieves 90%latency reduction and over 35%throughput improvement compared to traditional blockchain identity solutions.It also exhibits a high quantum resistance score(95/100),with successful secure verification under simulated quantum adversaries.The revocation mechanism—implemented using Merkle-tree-based proofs—achieves average response times under 40 ms,and the system maintains secure operations with energy consumption below 9 J per authentication cycle.Additionally,the paper presents a security and cost tradeoff analysis using ZKP schemes such as Bulletproofs and STARKs,revealing superior bits-per-byte efficiency and reduced proof sizes.Real-world adoption scenarios,including integration with six major DeFi protocols,indicate a 25%increase in verified users and a 15%improvement in Total Value Locked(TVL).The proposed solution is projected to remain secure until 2041(basic version)and 2043(advanced version),ensuring long-term sustainability and future-proofing against evolving quantum threats.This work establishes a scalable,privacy-preserving identity model that aligns with emerging post-quantum security standards for decentralized ecosystems.
文摘As the demand for cross-departmental data collaboration continues to grow,traditional encryption methods struggle to balance data privacy with computational efficiency.This paper proposes a cross-departmental privacy-preserving computation framework based on BFV homomorphic encryption,threshold decryption,and blockchain technology.The proposed scheme leverages homomorphic encryption to enable secure computations between sales,finance,and taxation departments,ensuring that sensitive data remains encrypted throughout the entire process.A threshold decryption mechanism is employed to prevent single-point data leakage,while blockchain and IPFS are integrated to ensure verifiability and tamper-proof storage of computation results.Experimental results demonstrate that with 5,000 sample data entries,the framework performs efficiently and is highly scalable in key stages such as sales encryption,cost calculation,and tax assessment,thereby validating its practical feasibility and security.
文摘The advancement of 6G wireless communication technology has facilitated the integration of Vehicular Ad-hoc Networks(VANETs).However,the messages transmitted over the public channel in the open and dynamic VANETs are vulnerable to malicious attacks.Although numerous researchers have proposed authentication schemes to enhance the security of Vehicle-to-Vehicle(V2V)communication,most existing methodologies face two significant challenges:(1)the majority of the schemes are not lightweight enough to support realtime message interaction among vehicles;(2)the sensitive information like identity and position is at risk of being compromised.To tackle these issues,we propose a lightweight dual authentication protocol for V2V communication based on Physical Unclonable Function(PUF).The proposed scheme accomplishes dual authentication between vehicles by the combination of Zero-Knowledge Proof(ZKP)and MASK function.The security analysis proves that our scheme provides both anonymous authentication and information unlinkability.Additionally,the performance analysis demonstrates that the computation overhead of our scheme is approximately reduced 23.4% compared to the state-of-the-art schemes.The practical simulation conducted in a 6G network environment demonstrates the feasibility of 6G-based VANETs and their potential for future advancements.
文摘Interactive proof and zero-knowledge proof systems are two important concepts in cryptography and complexity theory. In the past two decades, a great number of interactive proof and zero-knowledge proof protocols have been designed and applied in practice. In this paper, a simple memorizable zero-knowledge protocol is proposed for graph non-isomorphism problem, based on the memorizable interactive proof system, which is extended from the original definition of interactive proof and is more applicable in reality. Keywords interactive proof - zero-knowledge proof - memorizable interactive proof - memorizable zero-knowledge proof This work was supported by the ministry of Science and Technology of China (Grant No.2001CCA03000), and the National Natural Science Foundation of China (Grant No.60273045).Ning Chen received his B.S. degree from Fudan University in 2001. Now he is a master candidate of Department of Computer Science, Fudan University. His research interests include computational complexity, computational cryptography, algorithm design and analysis.Jia-Wei Rong received her B.S. degree from Fudan University in 2002. Now she is a master candidate of Department of Computer Science, Fudan University. Her research interests include computational cryptography, machine learning, artificial intelligence.
基金supported by the Emerging Interdisciplinary Project of CUFE,the National Natural Science Foundation of China (No.61906220)Ministry of Education of Humanities and Social Science project (No.19YJCZH178).
文摘Blockchains are widely used because of their openness,transparency,nontampering and decentralization.However,there is a high risk of information leakage when trading on blockchain,and the existing anonymous trading schemes still have some problems.To meet the high requirement of anonymity,the cost of proof submitted by the user is too large,which does not apply to blockchain storage.Meanwhile,transaction verification takes too long to ensure the legitimacy of the transaction.To solve these problems,this paper presents a novel anonymous trading scheme named Block Maze Smart Contract(BMSC)based on the zeroknowledge proof system zk-SNARKs to propose efficiency.This scheme can hide account balances,transaction amounts,and the transfer relationships between transaction parties while preventing overspending attacks and double-spending attacks.Compared with other anonymous schemes,this scheme has less cost of proof and takes less time for transaction verification while meeting the high requirements of anonymity and security.