Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p...Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.展开更多
The fabrication of efficient and stable flexible perovskite solar modules(F-PSMs)using poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)remains a significant challenge due to its hydrophobic properties and the mis...The fabrication of efficient and stable flexible perovskite solar modules(F-PSMs)using poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)remains a significant challenge due to its hydrophobic properties and the mismatch in interface energy-level alignment.Here,we introduced[2-(3,6-dimethoxy-9H-carba zol-9-yl)ethyl]phosphonic acid(MeO-2PACz)to modify the PTAA layer,which effectively suppressed surface potential fluctuations and aligned energy levels at the interface of PTAA/perovskite.Additionally,MeO-2PACz enhanced the hydrophilicity of PTAA,facilitating the fabrication of dense,uniform,and pinhole-free perovskite films on large-area flexible substrates.As a result,we achieved an F-PSM with a power conversion efficiency(PCE)of 16.6% and an aperture area of 64 cm^(2),which is the highest reported value among F-PSMs with an active area exceeding 35 cm^(2)based on PTAA.Moreover,the encapsulated module demonstrated outstanding long-term operational stability,retaining 90.2% of its initial efficiency after 1000 bending cycles(5 mm radius),87.2% after 1000 h of continuous illumination,and 80.3% under combined thermal and humid conditions(85℃ and 85% relative humidity),representing one of the most stable F-PSMs reported to date.展开更多
Let D(n)be the finite dimensional non-pointed and non-semisimple Hopf algebra,which is a quotient of a prime Hopf algebras of GK-dimension one for an odd number n>1.In this paper,we investigate the structure of Yet...Let D(n)be the finite dimensional non-pointed and non-semisimple Hopf algebra,which is a quotient of a prime Hopf algebras of GK-dimension one for an odd number n>1.In this paper,we investigate the structure of Yetter-Drinfeld simple modules over D(n)and give iso-classes of them.展开更多
This study proposes a novel visual maintenance method for photovoltaic(PV)modules based on a two-stage Wiener degradation model,addressing the limitations of traditional PV maintenance strategies that often result in ...This study proposes a novel visual maintenance method for photovoltaic(PV)modules based on a two-stage Wiener degradation model,addressing the limitations of traditional PV maintenance strategies that often result in insufficient or excessive maintenance.The approach begins by constructing a two-stage Wiener process performance degradation model and a remaining life prediction model under perfect maintenance conditions using historical degradation data of PV modules.This enables accurate determination of the optimal timing for postfailure corrective maintenance.To optimize the maintenance strategy,the study establishes a comprehensive cost model aimed at minimizing the long-term average cost rate.The model considers multiple cost factors,including inspection costs,preventive maintenance costs,restorative maintenance costs,and penalty costs associated with delayed fault detection.Through this optimization framework,the method determines both the optimal maintenance threshold and the ideal timing for predictive maintenance actions.Comparative analysis demonstrates that the twostage Wiener model provides superior fitting performance compared to conventional linear and nonlinear degradation models.When evaluated against traditional maintenance approaches,including Wiener process-based corrective maintenance strategies and static periodic maintenance strategies,the proposed method demonstrates significant advantages in reducing overall operational costs while extending the effective service life of PV components.The method achieves these improvements through effective coordination between reliability optimization and economic benefit maximization,leading to enhanced power generation performance.These results indicate that the proposed approach offers a more balanced and efficient solution for PV system maintenance.展开更多
Most carbon-based catalysts utilized in Fenton-like systems face challenges such as structural instability,susceptibility to deactivation,and a tendency to disperse during operation.Wood-derived catalysts have garnere...Most carbon-based catalysts utilized in Fenton-like systems face challenges such as structural instability,susceptibility to deactivation,and a tendency to disperse during operation.Wood-derived catalysts have garnered considerable attention due to their well-defined structures,extensive pipeline networks,superior mechanical strength,and adaptability for device customization.However,there remains a paucity of research that systematically summarizes Fenton-like systems based on wood-derived catalysts.In this review,we first summarize the structural designs of wood-derived catalysts based on nano-metal sites and single-atom sites,while also outlining their advantages and limitations applied in Fenton-like systems.Furthermore,we evaluate catalytic modules of wood-derived catalysts for scale-up and continuous Fenton-like systems.Additionally,wood-inspired catalytic materials utilizing commercial textures and their applications in Fenton-like processes are also discussed.This paper aims to comprehensively explore the fundamental mechanisms(e.g.,characteristics of catalytic sites,catalytic performance,and mechanisms)of wood-based catalysts in Fenton-like chemistry,as well as their equipment designs and application scenarios,as well as providing the insights into future developments.展开更多
Currently,perovskite solar cells have achieved commendable progresses in power conversion efficiency(PCE)and operational stability.However,some conventional laboratory-scale fabrication methods become challenging when...Currently,perovskite solar cells have achieved commendable progresses in power conversion efficiency(PCE)and operational stability.However,some conventional laboratory-scale fabrication methods become challenging when scaling up material syntheses or device production.Particularly,the prolonged high-temperature annealing process for the crystallization of perovskites requires a substantial amount of energy consumption and impact the modules’throughput.Here,we report a modified near-infrared annealing(NIRA)process,which involves the excess PbI_(2)engineered crystallization,efficiently reduces the preparation time for perovskite active layer to within 20 s compared to dozens of min in conventional hot plate annealing(HPA)process.The study showed that the incorporated PbI_(2)promoted the consistent nucleation of the perovskite film,leading to the subsequent rapid and homogeneous crystallization at the NIRA stage.Thus,highly crystalized perovskite film was realized with even better crystallization performance than conventional HPA-based film.Ultimately,efficient perovskite solar modules of 36 and 100 cm^(2)were readily fabricated with the optimal PCEs of 22.03%and 20.18%,respectively.This study demonstrates,for the first time,the successful achievement of homogeneous and high-quality crystallization in large-area perovskite films through rapid NIRA processing.This approach not only significantly reduces energy consumption during production,but also substantially shortens the manufacturing cycle,paving a new path toward the commercial-scale application of perovskite solar modules.展开更多
Modules enable students to engage with content at their own pace,fostering autonomy and deeper understanding.The modular approach ensures clarity in presenting objectives,instructions,and concepts,while having illustr...Modules enable students to engage with content at their own pace,fostering autonomy and deeper understanding.The modular approach ensures clarity in presenting objectives,instructions,and concepts,while having illustrations,activities,and assessments could enhance comprehension and retention.This paper was a developmental study on STS module for college students using the ADDIE Model(Analysis,Design,Development,Implementation,and Evaluation).Sampled 673 first-year students from Northwest Samar State University participated in the study,with 299 participating in a test try-out and 374 in the students’performance evaluation.Three expert evaluators with backgrounds in science,English,and psychology,each with over four years of experience,assessed the modules to ensure alignment with the study’s constructivist learning goals and instructional integrity.The findings revealed that both students and experts had rated the instructional module positively,indicating its effectiveness in facilitating learning and completing lessons.Key aspects such as the style of illustrations and written expressions,the usefulness of learning activities,and the guidance provided by illustrations and captions were especially well-received.The module was praised for its clear objectives,understandable instructions,and engaging tasks like trivia and puzzles.Expert evaluations highlighted relevance,simplicity,and balanced emphasis on topics in the module content.Furthermore,students in test group demonstrated significant improvement in performance,with post-test scores notably higher than pre-test scores,confirming the module’s effectiveness in enhancing learning outcomes.Consequently,this paper provides an opportunity to integrate science learning with initiatives aimed at promoting environmental preservation and driving social change.展开更多
Current research focuses on the performance degradation of photovoltaic(PV)modules,examining both crystalline silicon(p-Si and m-Si)and thin-film technologies,including a-Si/μc-Si,HIT,CdTe and CIGS.These modules were...Current research focuses on the performance degradation of photovoltaic(PV)modules,examining both crystalline silicon(p-Si and m-Si)and thin-film technologies,including a-Si/μc-Si,HIT,CdTe and CIGS.These modules were operated outdoors in two distinct climatic zones in the United States(US)over a period of three years.The degradation analysis includes the study of various quantities,such as the decrease in peak power,the reduction in current and voltage,and the variation in the fill factor.The annual degradation rate(DR)of PV modules is obtained by a linear fit of the effective maximum power evolution over time.The results indicate that m-Si and p-Si modules experienced a slight decrease in performance,with DRs of−0.83%and−1.07%,respectively.Subsequently,the HIT module exhibited a DR of−1.75%,while CdTe and CIGS modules demonstrated DRs of−2.03%and−2.45%,respectively.The a-Si/μc-Si module showed the highest DR at−3.26%.Using the Single Diode Model(SDM),we monitored the temporal evolution of physical parameters as well as changes in the shape of the I-V and P-V curves over time.We found that the key points of the I-V curve degrade over time,as do the I-V and P-V characteristics between two days approximately 30 months apart.展开更多
Poly(3-hexylthiophene)(P3HT)is one of the most promising hole-transporting materials in the pursuit of efficient and stable perovskite solar cells due to its outstanding stability and low cost.However,the intrinsic lo...Poly(3-hexylthiophene)(P3HT)is one of the most promising hole-transporting materials in the pursuit of efficient and stable perovskite solar cells due to its outstanding stability and low cost.However,the intrinsic low carrier density of P3 HT and poor contact between the P3HT/perovskite interface always lead to a low performance of the solar cell,while conventional chemical doping always makes the films unstable and limits the scalability.In this work,for the first time,we simultaneously enhanced the hole transporting properties of P3HT film and the interface of perovskite by doping it with a judiciously designed oxidized small molecule organic semiconductor.The organic salt not only can promote the lamellar crystallinity of P3HT to obtain better charge transport properties,but also reduce the defects of perovskite.As a result,we achieved champion efficiencies of 23.0%for small-area solar cells and 18.8%for larger-area modules(48.0 cm^(2)).This efficiency is the highest value for P3HT-based perovskite modules.Moreover,the solar cells show excellent operational stability,retaining over 95%of their initial efficiencies after1200 h of continuous operation.展开更多
Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,includi...Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,including cerebrospinal fluid,varies significantly(Figure 1Α;Yung et al.,2014).LPA actually corresponds to a variety of lipid species that include different stereoisomers with either saturated or unsaturated fatty acids bearing likely differentiated biological activities(Figure 1Α;Yung et al.,2014;Hernández-Araiza et al.,2018).展开更多
The interaction between the active chips mounted and the same base plate is considered as a thermoelectrical coupling effect.An approach to coupling effect analysis of a multi-chip system is presented with IGBT as a s...The interaction between the active chips mounted and the same base plate is considered as a thermoelectrical coupling effect.An approach to coupling effect analysis of a multi-chip system is presented with IGBT as a sample.Finite element method is used to evaluate the temperature distribution in power modules.The precise electrothermal model is obtained by fitting the curve of transient thermal impedance with a finite series of exponential terms,in which,the thermal-coupling effect among chips is considered as a prediction of the highest transient temperature of the chips.This model can be used in many thermal monitoring systems.Both ANSYS and PSPICE si- mulation software have been employed,and the simulation results agree with the experimental ones very well.展开更多
Design and fabrication of a parallel optical transmitter are reported. The optimized 12 channel parallel optical transmitter,with each channel's data rate up to 3Gbit/s,is designed, assembled, and measured. A top-emi...Design and fabrication of a parallel optical transmitter are reported. The optimized 12 channel parallel optical transmitter,with each channel's data rate up to 3Gbit/s,is designed, assembled, and measured. A top-emitting 850nm vertical cavity surface emitting laser(VCSEL) array is adopted as the light source,and the VCSEL chip is directly wire bonded to a 12 channel driver IC. The outputs of the VCSEL array are directly butt coupled into a 12 channel fiber array. Small form factor pluggable (SFP) packaging technology is used in the module to support hot pluggable in application. The performance results of the module are demonstrated. At an operating current of 8mA, an eye diagram at 3Gbit/s is achieved with an optical output of more than 1mW.展开更多
The question of how the category of entwined modules can be made into a braided monoidal category is studied. First, the sufficient and necessary conditions making the category into a monoidal category are obtained by...The question of how the category of entwined modules can be made into a braided monoidal category is studied. First, the sufficient and necessary conditions making the category into a monoidal category are obtained by using the fact that if (A, C, ψ) is an entwining structure, then A × C can be made into an entwined module. The conditions are that the algebra and coalgebra in question are both bialgebras with some extra compatibility relations. Then given a monodial category of entwined modules, the braiding is constructed by means of a twisted convolution invertible map Q, and the conditions making the category form into a braided monoidal category are obtained similarly. Finally, the construction is applied to the category of Doi-Hopf modules and (α, β )-Yetter-Drinfeld modules as examples.展开更多
Some homological properties of R-modules were investigated by matrices over aring R. Given two cardinal numbers α, β and an α x β row-finite matrix A, it was proved thatExt_R^1(R^((α))/R^((β))A, M) = 0 if and on...Some homological properties of R-modules were investigated by matrices over aring R. Given two cardinal numbers α, β and an α x β row-finite matrix A, it was proved thatExt_R^1(R^((α))/R^((β))A, M) = 0 if and only if M_α/r_(M_α)(R^((β))A) ≈ Hom_R(R^((β))A,M) ifand only if r_(M_β)l_(R^((β)))(A) = AM_α. Thus, the notion of (m,n)-injectivity was extended.Moreover, ( α, β) -flatness was characterized via annihilators of matrices, factorizations ofhomomorphisms as well as homological groups so that (m, n)-flat modules, f-projective modules andn-projective modules were consolidated under the notion of (α, β)-flat modules. Furthermore, acharacterization of left R-ML modules and some equivalent conditions for R^((β)) to be left R-MLwere presented. Consequently, the notions of coherent rings, (m, n)-coherent rings and π-coherentrings were consolidated under that of (α, β)-coherent rings.展开更多
Let H be a commutative, noetherian, semisimple and cosemisimple Hopf algebra with a bijective antipode over a field k. Then the semisimplicity of YD(H) is considered, where YD (H) means the disjoint union of the c...Let H be a commutative, noetherian, semisimple and cosemisimple Hopf algebra with a bijective antipode over a field k. Then the semisimplicity of YD(H) is considered, where YD (H) means the disjoint union of the category of generalized Yetter-Drinfeld modules nYD^H( α, β) for any α, β E Aut Hopf(H). First, the fact that YD(H) is closed under Mor is proved. Secondly, based on the properties of finitely generated projective modules and semisimplicity of H, YD(H) satisfies the exact condition. Thus each object in YD(H) can be decomposed into simple ones since H is noetherian and cosemisimple. Finally, it is proved that YD (H) is a sernisimple category.展开更多
The linear operations of the equivalent classes of crossed modules of Lie color algebras are studied. The set of the equivalent classes of crossed modules is proved to be a vector space, which is isomorphic with the h...The linear operations of the equivalent classes of crossed modules of Lie color algebras are studied. The set of the equivalent classes of crossed modules is proved to be a vector space, which is isomorphic with the homogeneous components of degree zero of the third cohomology group of Lie color algebras. As an application of this theory, the crossed modules of Witt type Lie color algebras is described, and the result is proved that there is only one equivalent class of the crossed modules of Witt type Lie color algebras when the abelian group Г is equal to Г+. Finally, for a Witt type Lie color algebra, the classification of its crossed modules is obtained by the isomorphism between the third cohomology group and the crossed modules.展开更多
118 kinds of Pt-Zr phases were established and investigated by considering various structures. Then the related physical properties, such as structural stability, lattice constants, formation enthalpies, elastic const...118 kinds of Pt-Zr phases were established and investigated by considering various structures. Then the related physical properties, such as structural stability, lattice constants, formation enthalpies, elastic constants and bulk moduli, are obtained by ab initio calculations. Based on the calculated results of formation enthalpies, the ground-state convex hull is derived for the Pt-Zr system. The calculated physical data would provide a basis for further thermodynamic calculations and atomistic simulations. For these Pt-Zr compounds, it is found there are a positive linear correlation between the formation enthalpies and atomic volumes, and a negative linear correlation between the bulk modules and atomic volumes.展开更多
The use of either lossless snubbers or resonant zero voltage switching (ZVS) and zero current switching (ZCS) techniques can increase efficiency and reduce electromagnetic inter ference (EMI) and noise of industrial p...The use of either lossless snubbers or resonant zero voltage switching (ZVS) and zero current switching (ZCS) techniques can increase efficiency and reduce electromagnetic inter ference (EMI) and noise of industrial power equipment at high switching frequencies. This paper presents an adaptive composite soft switching configuration which combines snubber functions and resonant ZCS circuits for switches in inverters using power bridge leg modules. Simulation and experimental results are included.展开更多
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.
基金financially supported by the Key Fund of Tianjin Natural Science Foundation,China Project of Tianjin Natural Science Foundation(24JCZDJC00510)the National Natural Science Foundation of China,China(22475147)the Fundamental Research Funds for the Central Universities,China。
文摘The fabrication of efficient and stable flexible perovskite solar modules(F-PSMs)using poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)remains a significant challenge due to its hydrophobic properties and the mismatch in interface energy-level alignment.Here,we introduced[2-(3,6-dimethoxy-9H-carba zol-9-yl)ethyl]phosphonic acid(MeO-2PACz)to modify the PTAA layer,which effectively suppressed surface potential fluctuations and aligned energy levels at the interface of PTAA/perovskite.Additionally,MeO-2PACz enhanced the hydrophilicity of PTAA,facilitating the fabrication of dense,uniform,and pinhole-free perovskite films on large-area flexible substrates.As a result,we achieved an F-PSM with a power conversion efficiency(PCE)of 16.6% and an aperture area of 64 cm^(2),which is the highest reported value among F-PSMs with an active area exceeding 35 cm^(2)based on PTAA.Moreover,the encapsulated module demonstrated outstanding long-term operational stability,retaining 90.2% of its initial efficiency after 1000 bending cycles(5 mm radius),87.2% after 1000 h of continuous illumination,and 80.3% under combined thermal and humid conditions(85℃ and 85% relative humidity),representing one of the most stable F-PSMs reported to date.
基金Supported by the Fundamental Research Program of Shanxi Province(Grant No.202303021212147)the National Natural Science Foundation of China(Grant No.12471038)。
文摘Let D(n)be the finite dimensional non-pointed and non-semisimple Hopf algebra,which is a quotient of a prime Hopf algebras of GK-dimension one for an odd number n>1.In this paper,we investigate the structure of Yetter-Drinfeld simple modules over D(n)and give iso-classes of them.
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘This study proposes a novel visual maintenance method for photovoltaic(PV)modules based on a two-stage Wiener degradation model,addressing the limitations of traditional PV maintenance strategies that often result in insufficient or excessive maintenance.The approach begins by constructing a two-stage Wiener process performance degradation model and a remaining life prediction model under perfect maintenance conditions using historical degradation data of PV modules.This enables accurate determination of the optimal timing for postfailure corrective maintenance.To optimize the maintenance strategy,the study establishes a comprehensive cost model aimed at minimizing the long-term average cost rate.The model considers multiple cost factors,including inspection costs,preventive maintenance costs,restorative maintenance costs,and penalty costs associated with delayed fault detection.Through this optimization framework,the method determines both the optimal maintenance threshold and the ideal timing for predictive maintenance actions.Comparative analysis demonstrates that the twostage Wiener model provides superior fitting performance compared to conventional linear and nonlinear degradation models.When evaluated against traditional maintenance approaches,including Wiener process-based corrective maintenance strategies and static periodic maintenance strategies,the proposed method demonstrates significant advantages in reducing overall operational costs while extending the effective service life of PV components.The method achieves these improvements through effective coordination between reliability optimization and economic benefit maximization,leading to enhanced power generation performance.These results indicate that the proposed approach offers a more balanced and efficient solution for PV system maintenance.
基金supported by National Natural Science Foundation of China(Nos.52170086,22308194,U22A20423)Natural Science Foundation of Shandong Province(No.ZR2021ME013)+4 种基金Shandong Provincial Excellent Youth(No.ZR2022YQ47)the doctor research start Foundation of Shaanxi University of Technology(No.SLGRCQD004)Science and Technology Innovation Team Project of Shaanxi Province(No.2025RS-CXTD-040)the General Special Scientific Research Program of the Shaanxi Provincial Department of Education(No.24JK0366)supported by funding from Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology。
文摘Most carbon-based catalysts utilized in Fenton-like systems face challenges such as structural instability,susceptibility to deactivation,and a tendency to disperse during operation.Wood-derived catalysts have garnered considerable attention due to their well-defined structures,extensive pipeline networks,superior mechanical strength,and adaptability for device customization.However,there remains a paucity of research that systematically summarizes Fenton-like systems based on wood-derived catalysts.In this review,we first summarize the structural designs of wood-derived catalysts based on nano-metal sites and single-atom sites,while also outlining their advantages and limitations applied in Fenton-like systems.Furthermore,we evaluate catalytic modules of wood-derived catalysts for scale-up and continuous Fenton-like systems.Additionally,wood-inspired catalytic materials utilizing commercial textures and their applications in Fenton-like processes are also discussed.This paper aims to comprehensively explore the fundamental mechanisms(e.g.,characteristics of catalytic sites,catalytic performance,and mechanisms)of wood-based catalysts in Fenton-like chemistry,as well as their equipment designs and application scenarios,as well as providing the insights into future developments.
基金supported by China Huaneng Group Key R&D Program(HNKJ22-H104)the Science and Technology Programs of Fujian Province(2022H0005)+1 种基金the Fundamental Research Funds for the Central Universities(20720240067)Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(RD2020020101 and RD2022040601).
文摘Currently,perovskite solar cells have achieved commendable progresses in power conversion efficiency(PCE)and operational stability.However,some conventional laboratory-scale fabrication methods become challenging when scaling up material syntheses or device production.Particularly,the prolonged high-temperature annealing process for the crystallization of perovskites requires a substantial amount of energy consumption and impact the modules’throughput.Here,we report a modified near-infrared annealing(NIRA)process,which involves the excess PbI_(2)engineered crystallization,efficiently reduces the preparation time for perovskite active layer to within 20 s compared to dozens of min in conventional hot plate annealing(HPA)process.The study showed that the incorporated PbI_(2)promoted the consistent nucleation of the perovskite film,leading to the subsequent rapid and homogeneous crystallization at the NIRA stage.Thus,highly crystalized perovskite film was realized with even better crystallization performance than conventional HPA-based film.Ultimately,efficient perovskite solar modules of 36 and 100 cm^(2)were readily fabricated with the optimal PCEs of 22.03%and 20.18%,respectively.This study demonstrates,for the first time,the successful achievement of homogeneous and high-quality crystallization in large-area perovskite films through rapid NIRA processing.This approach not only significantly reduces energy consumption during production,but also substantially shortens the manufacturing cycle,paving a new path toward the commercial-scale application of perovskite solar modules.
文摘Modules enable students to engage with content at their own pace,fostering autonomy and deeper understanding.The modular approach ensures clarity in presenting objectives,instructions,and concepts,while having illustrations,activities,and assessments could enhance comprehension and retention.This paper was a developmental study on STS module for college students using the ADDIE Model(Analysis,Design,Development,Implementation,and Evaluation).Sampled 673 first-year students from Northwest Samar State University participated in the study,with 299 participating in a test try-out and 374 in the students’performance evaluation.Three expert evaluators with backgrounds in science,English,and psychology,each with over four years of experience,assessed the modules to ensure alignment with the study’s constructivist learning goals and instructional integrity.The findings revealed that both students and experts had rated the instructional module positively,indicating its effectiveness in facilitating learning and completing lessons.Key aspects such as the style of illustrations and written expressions,the usefulness of learning activities,and the guidance provided by illustrations and captions were especially well-received.The module was praised for its clear objectives,understandable instructions,and engaging tasks like trivia and puzzles.Expert evaluations highlighted relevance,simplicity,and balanced emphasis on topics in the module content.Furthermore,students in test group demonstrated significant improvement in performance,with post-test scores notably higher than pre-test scores,confirming the module’s effectiveness in enhancing learning outcomes.Consequently,this paper provides an opportunity to integrate science learning with initiatives aimed at promoting environmental preservation and driving social change.
文摘Current research focuses on the performance degradation of photovoltaic(PV)modules,examining both crystalline silicon(p-Si and m-Si)and thin-film technologies,including a-Si/μc-Si,HIT,CdTe and CIGS.These modules were operated outdoors in two distinct climatic zones in the United States(US)over a period of three years.The degradation analysis includes the study of various quantities,such as the decrease in peak power,the reduction in current and voltage,and the variation in the fill factor.The annual degradation rate(DR)of PV modules is obtained by a linear fit of the effective maximum power evolution over time.The results indicate that m-Si and p-Si modules experienced a slight decrease in performance,with DRs of−0.83%and−1.07%,respectively.Subsequently,the HIT module exhibited a DR of−1.75%,while CdTe and CIGS modules demonstrated DRs of−2.03%and−2.45%,respectively.The a-Si/μc-Si module showed the highest DR at−3.26%.Using the Single Diode Model(SDM),we monitored the temporal evolution of physical parameters as well as changes in the shape of the I-V and P-V curves over time.We found that the key points of the I-V curve degrade over time,as do the I-V and P-V characteristics between two days approximately 30 months apart.
基金financially supported by the National Natural Science Foundation of China(52472248 and 22075221)the Key Research and Development Project of Shanxi Province(202202060301003 and 202202060301015)the Innovation Program of Wuhan-Shuguang Project(2023010201020367)。
文摘Poly(3-hexylthiophene)(P3HT)is one of the most promising hole-transporting materials in the pursuit of efficient and stable perovskite solar cells due to its outstanding stability and low cost.However,the intrinsic low carrier density of P3 HT and poor contact between the P3HT/perovskite interface always lead to a low performance of the solar cell,while conventional chemical doping always makes the films unstable and limits the scalability.In this work,for the first time,we simultaneously enhanced the hole transporting properties of P3HT film and the interface of perovskite by doping it with a judiciously designed oxidized small molecule organic semiconductor.The organic salt not only can promote the lamellar crystallinity of P3HT to obtain better charge transport properties,but also reduce the defects of perovskite.As a result,we achieved champion efficiencies of 23.0%for small-area solar cells and 18.8%for larger-area modules(48.0 cm^(2)).This efficiency is the highest value for P3HT-based perovskite modules.Moreover,the solar cells show excellent operational stability,retaining over 95%of their initial efficiencies after1200 h of continuous operation.
基金supported by the Hellenic Foundation for Research and Innovation,HFRI,“2nd Call for HFRI Research Projects to support Faculty Members&Researchers”Project 02667 to GL.
文摘Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,including cerebrospinal fluid,varies significantly(Figure 1Α;Yung et al.,2014).LPA actually corresponds to a variety of lipid species that include different stereoisomers with either saturated or unsaturated fatty acids bearing likely differentiated biological activities(Figure 1Α;Yung et al.,2014;Hernández-Araiza et al.,2018).
文摘The interaction between the active chips mounted and the same base plate is considered as a thermoelectrical coupling effect.An approach to coupling effect analysis of a multi-chip system is presented with IGBT as a sample.Finite element method is used to evaluate the temperature distribution in power modules.The precise electrothermal model is obtained by fitting the curve of transient thermal impedance with a finite series of exponential terms,in which,the thermal-coupling effect among chips is considered as a prediction of the highest transient temperature of the chips.This model can be used in many thermal monitoring systems.Both ANSYS and PSPICE si- mulation software have been employed,and the simulation results agree with the experimental ones very well.
文摘Design and fabrication of a parallel optical transmitter are reported. The optimized 12 channel parallel optical transmitter,with each channel's data rate up to 3Gbit/s,is designed, assembled, and measured. A top-emitting 850nm vertical cavity surface emitting laser(VCSEL) array is adopted as the light source,and the VCSEL chip is directly wire bonded to a 12 channel driver IC. The outputs of the VCSEL array are directly butt coupled into a 12 channel fiber array. Small form factor pluggable (SFP) packaging technology is used in the module to support hot pluggable in application. The performance results of the module are demonstrated. At an operating current of 8mA, an eye diagram at 3Gbit/s is achieved with an optical output of more than 1mW.
基金Specialized Research Fund for the Doctoral Program of Higher Education(No.20060286006)the National Natural Science Founda-tion of China(No.10571026)
文摘The question of how the category of entwined modules can be made into a braided monoidal category is studied. First, the sufficient and necessary conditions making the category into a monoidal category are obtained by using the fact that if (A, C, ψ) is an entwining structure, then A × C can be made into an entwined module. The conditions are that the algebra and coalgebra in question are both bialgebras with some extra compatibility relations. Then given a monodial category of entwined modules, the braiding is constructed by means of a twisted convolution invertible map Q, and the conditions making the category form into a braided monoidal category are obtained similarly. Finally, the construction is applied to the category of Doi-Hopf modules and (α, β )-Yetter-Drinfeld modules as examples.
文摘Some homological properties of R-modules were investigated by matrices over aring R. Given two cardinal numbers α, β and an α x β row-finite matrix A, it was proved thatExt_R^1(R^((α))/R^((β))A, M) = 0 if and only if M_α/r_(M_α)(R^((β))A) ≈ Hom_R(R^((β))A,M) ifand only if r_(M_β)l_(R^((β)))(A) = AM_α. Thus, the notion of (m,n)-injectivity was extended.Moreover, ( α, β) -flatness was characterized via annihilators of matrices, factorizations ofhomomorphisms as well as homological groups so that (m, n)-flat modules, f-projective modules andn-projective modules were consolidated under the notion of (α, β)-flat modules. Furthermore, acharacterization of left R-ML modules and some equivalent conditions for R^((β)) to be left R-MLwere presented. Consequently, the notions of coherent rings, (m, n)-coherent rings and π-coherentrings were consolidated under that of (α, β)-coherent rings.
基金The National Natural Science Foundation of China(No.11371088)the Fundamental Research Funds for the Central Universities(No.3207013906)the Natural Science Foundation of Jiangsu Province(No.BK2012736)
文摘Let H be a commutative, noetherian, semisimple and cosemisimple Hopf algebra with a bijective antipode over a field k. Then the semisimplicity of YD(H) is considered, where YD (H) means the disjoint union of the category of generalized Yetter-Drinfeld modules nYD^H( α, β) for any α, β E Aut Hopf(H). First, the fact that YD(H) is closed under Mor is proved. Secondly, based on the properties of finitely generated projective modules and semisimplicity of H, YD(H) satisfies the exact condition. Thus each object in YD(H) can be decomposed into simple ones since H is noetherian and cosemisimple. Finally, it is proved that YD (H) is a sernisimple category.
基金The Natural Science Foundation of Jiangsu Province(No.BK2012736)the Natural Science Foundation of Chuzhou University(No.2010kj006Z)
文摘The linear operations of the equivalent classes of crossed modules of Lie color algebras are studied. The set of the equivalent classes of crossed modules is proved to be a vector space, which is isomorphic with the homogeneous components of degree zero of the third cohomology group of Lie color algebras. As an application of this theory, the crossed modules of Witt type Lie color algebras is described, and the result is proved that there is only one equivalent class of the crossed modules of Witt type Lie color algebras when the abelian group Г is equal to Г+. Finally, for a Witt type Lie color algebra, the classification of its crossed modules is obtained by the isomorphism between the third cohomology group and the crossed modules.
基金Projects (50971072,51131003) support by the National Natural Science Foundation of ChinaProjects (2011CB606301,2012CB825700) supported by the Ministry of Science and Technology of ChinaProject supported by the Administration of Tsinghua University
文摘118 kinds of Pt-Zr phases were established and investigated by considering various structures. Then the related physical properties, such as structural stability, lattice constants, formation enthalpies, elastic constants and bulk moduli, are obtained by ab initio calculations. Based on the calculated results of formation enthalpies, the ground-state convex hull is derived for the Pt-Zr system. The calculated physical data would provide a basis for further thermodynamic calculations and atomistic simulations. For these Pt-Zr compounds, it is found there are a positive linear correlation between the formation enthalpies and atomic volumes, and a negative linear correlation between the bulk modules and atomic volumes.
基金Supported by the Zhejiang Province Natural Science Foundationthe Royal Society of U.K.
文摘The use of either lossless snubbers or resonant zero voltage switching (ZVS) and zero current switching (ZCS) techniques can increase efficiency and reduce electromagnetic inter ference (EMI) and noise of industrial power equipment at high switching frequencies. This paper presents an adaptive composite soft switching configuration which combines snubber functions and resonant ZCS circuits for switches in inverters using power bridge leg modules. Simulation and experimental results are included.