In the conventional technique,in the evaluation of the severity index,clustering and loading suffer from more iteration leading to more com-putational delay.Hence this research article identifies,a novel progression f...In the conventional technique,in the evaluation of the severity index,clustering and loading suffer from more iteration leading to more com-putational delay.Hence this research article identifies,a novel progression for fast predicting the severity of the line and clustering by incorporating machine learning aspects.The polynomial load modelling or ZIP(constant impedances(Z),Constant Current(I)and Constant active power(P))is developed in the IEEE-14 and Indian 118 bus systems considered for analysis of power system security.The process of finding the severity of the line using a Hybrid Line Stability Ranking Index(HLSRI)is used for assisting the concepts of machine learning with J48 algorithm,infers the superior affected lines by adopting the IEEE standards in concern to be compensated in maintaining the power system stability.The simulation is performed in the WEKA environment and deals with the supervisor learning in order based on severity to ensure the safety of power system.The Unified Power Flow Controller(UPFC),facts devices for the purpose of compensating the losses by maintaining the voltage characteristics.The finite element analysis findings are compared with the existing procedures and numerical equations for authentications.展开更多
选用符合林火发生数据结构的Poisson和零膨胀Poisson(ZIP)模型对大兴安岭林区1980—2005年间林火发生与气象因素关系进行建模分析,并与普通最小二乘回归(ordinary least squares,OLS)方法的结果进行了对比分析.结果表明:OLS模型对研究...选用符合林火发生数据结构的Poisson和零膨胀Poisson(ZIP)模型对大兴安岭林区1980—2005年间林火发生与气象因素关系进行建模分析,并与普通最小二乘回归(ordinary least squares,OLS)方法的结果进行了对比分析.结果表明:OLS模型对研究区域林火发生与气象因素关系的拟合结果较差(R2=0.215);Poisson和ZIP模型的拟合效果较好,具有较好的火灾次数预测能力,且ZIP模型的预测能力高于Poisson模型.运用AIC和Vuong检验方法对Poisson和ZIP模型的拟合水平进行进一步检验,表明ZIP模型的数据拟合度优于Poisson模型.展开更多
文摘In the conventional technique,in the evaluation of the severity index,clustering and loading suffer from more iteration leading to more com-putational delay.Hence this research article identifies,a novel progression for fast predicting the severity of the line and clustering by incorporating machine learning aspects.The polynomial load modelling or ZIP(constant impedances(Z),Constant Current(I)and Constant active power(P))is developed in the IEEE-14 and Indian 118 bus systems considered for analysis of power system security.The process of finding the severity of the line using a Hybrid Line Stability Ranking Index(HLSRI)is used for assisting the concepts of machine learning with J48 algorithm,infers the superior affected lines by adopting the IEEE standards in concern to be compensated in maintaining the power system stability.The simulation is performed in the WEKA environment and deals with the supervisor learning in order based on severity to ensure the safety of power system.The Unified Power Flow Controller(UPFC),facts devices for the purpose of compensating the losses by maintaining the voltage characteristics.The finite element analysis findings are compared with the existing procedures and numerical equations for authentications.
文摘选用符合林火发生数据结构的Poisson和零膨胀Poisson(ZIP)模型对大兴安岭林区1980—2005年间林火发生与气象因素关系进行建模分析,并与普通最小二乘回归(ordinary least squares,OLS)方法的结果进行了对比分析.结果表明:OLS模型对研究区域林火发生与气象因素关系的拟合结果较差(R2=0.215);Poisson和ZIP模型的拟合效果较好,具有较好的火灾次数预测能力,且ZIP模型的预测能力高于Poisson模型.运用AIC和Vuong检验方法对Poisson和ZIP模型的拟合水平进行进一步检验,表明ZIP模型的数据拟合度优于Poisson模型.