This article summarizes the developments of experimental techniques for high pressure x-ray diffraction(XRD) in diamond anvil cells(DACs) using synchrotron radiation. Basic principles and experimental methods for ...This article summarizes the developments of experimental techniques for high pressure x-ray diffraction(XRD) in diamond anvil cells(DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, timeresolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF(Beijing Synchrotron Radiation Facility) and some results are also presented.展开更多
The composition and stain distributions in the InGaN epitaxial films are jointly measured by employing various x-ray diffraction (XRD) techniques, including out-of-plane XRD at special planes, in-plane grazing incid...The composition and stain distributions in the InGaN epitaxial films are jointly measured by employing various x-ray diffraction (XRD) techniques, including out-of-plane XRD at special planes, in-plane grazing incidence XRD, and reciprocal space mapping (RSM). It is confirmed that the measurement of (204) reflection allows a rapid access to estimate the composition without considering the influence of biaxial strain. The two-dimensional RSM checks composition and degree of strain relaxation jointly, revealing an inhomogeneous strain distribution profile along the growth direction. As the film thickness increases from 100 nm to 450 nm, the strain status of InGaN films gradually transfers from almost fully strained to fully relaxed state and then more In atoms incorporate into the film, while the near-interface region of InGaN films remains pseudomorphic to GaN.展开更多
High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten...High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.展开更多
Magnesium(Mg)alloys typically exhibit anisotropic mechanical behaviors due to their hexagonal close-packed(hcp)crystal structures,often leading to tension-compression asymmetries.Understanding of the asymmetrical and ...Magnesium(Mg)alloys typically exhibit anisotropic mechanical behaviors due to their hexagonal close-packed(hcp)crystal structures,often leading to tension-compression asymmetries.Understanding of the asymmetrical and related deformation mechanisms is crucial for their structural applications,particularly in the lightweight transportation industries.Nevertheless,the underlying deformation mechanisms(e.g.,slip versus twinning)at each deformation stage during tension and compression have not been fully understood.In this study,we employed tensile and compressive tests on extruded Al and Mn containing Mg alloy,i.e.,an AM alloy Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca,during the synchrotron X-ray diffraction.Our results show that distinct deformation behaviors and mechanisms in tension and compression are associated with the strong texture in the extruded samples:(i)The tensile deformation is dominated by dislocation slips,with activation of non-basaland<c+a>slip,but deformation twinning is suppressed.(ii)The compressive deformation shows early-stage tensile twinning,followed by dislocation slips.Twinning induces grain reorientation,leading to significant lattice strain evolution aligned with the texture.The pronounced tension-compression asymmetry is attributed to the favorable shear stress direction formed in the twinning system during compression,which facilitates the activation of tensile twins.During tension,the strain hardening rate(SHR)drops significantly after yielding due to limited activated slip systems.In contrast,the samples under compression exhibit significant increases in SHR after yielding.During compression,dislocation multiplication dominates the initial strain hardening,while twinning progressively contributes more significantly than dislocation slip at higher strains.This study improves our understanding of the tension-compression and strain hardening asymmetries in extruded AM Mg alloys.展开更多
The detrimental phase transformations of sodium layered transition metal oxides(Na_(x)TMO_(2))during desodiation/sodiation seriously suppress their practical applications for sodium ion batteries(SIBs).Undoubtedly,com...The detrimental phase transformations of sodium layered transition metal oxides(Na_(x)TMO_(2))during desodiation/sodiation seriously suppress their practical applications for sodium ion batteries(SIBs).Undoubtedly,comprehensively investigating of the dynamic crystal structure evolutions of Na_(x)TMO_(2)associating with Na ions extraction/intercalation and then deeply understanding of the relationships between electrochemical performances and phase structures drawing support from advanced characterization techniques are indispensable.In-situ high-energy X-ray diffraction(HEXRD),a powerful technology to distinguish the crystal structure of electrode materials,has been widely used to identify the phase evolutions of Na_(x)TMO_(2)and then profoundly revealed the electrochemical reaction processes.In this review,we begin with the descriptions of synchrotron characterization techniques and then present the advantages of synchrotron X-ray diffraction(XRD)over conventional XRD in detail.The optimizations of structural stability and electrochemical properties for P2-,O3-,and P2/O3-type Na_(x)TMO_(2)cathodes through single/dual-site substitution,high-entropy design,phase composition regulation,and surface engineering are summarized.The dynamic crystal structure evolutions of Na_(x)TMO_(2)polytypes during Na ion extraction/intercalation as well as corresponding structural enhancement mechanisms characterizing by means of HEXRD are concluded.The interior relationships between structure/component of Na_(x)TMO_(2)polytypes and their electrochemical properties are discussed.Finally,we look forward the research directions and issues in the route to improve the electrochemical properties of Na_(x)TMO_(2)cathodes for SIBs in the future and the combined utilizations of multiple characterization techniques.This review will provide significant guidelines for rational designs of high-performance Na_(x)TMO_(2)cathodes.展开更多
Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and ...Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and quantifying these superstructures hinder the optimization of pyrrhotite depression in flotation processes.To address this critical issue,synchrotron X-ray powder diffraction(S-XRPD)with Rietveld refinement was employed to quantify the distribution of superstructures in the feed and flotation concentrates of a copper–gold ore.To elucidate the mechanisms influencing depression,density functional theory(DFT)calculations were conducted to explore the electronic structures and surface reactivity of the pyrrhotite superstructures toward the adsorption of water,oxygen and hydroxyl ions(OH-)as dominant species present in the flotation process.S-XRPD analysis revealed that flotation recovery rates of pyrrhotite followed the order of 4C<6C<5C.DFT calculations indicated that the Fe 3d and S 3p orbital band centers exhibited a similar trend relative to the Fermi level with 4C being the closest.The Fe3d band center suggested that the 4C structure possessed a more reactive surface toward the oxygen reduction reaction,promoting the formation of hydrophilic Fe-OH sites.The S 3p band center order also implied that xanthate on the non-magnetic 5C and 6C surfaces could oxidize to dixanthogen,increasing hydrophobicity and floatability,while 4C formed less hydrophobic metal-xanthate complexes.Adsorption energy and charge transfer analyses of water,hydroxyl ions and molecular oxygen further supported the high reactivity and hydrophilic nature of 4C pyrrhotite.The strong bonding with hydroxyl ions indicated enhanced surface passivation by hydrophilic Fe–OOH complexes,aligning with the experimentally observed flotation order(4C<6C<5C).These findings provide a compelling correlation between experimental flotation results and electronic structure calculations,delivering crucial insights for optimizing flotation processes and improving pyrrhotite depression.This breakthrough opens up new opportunities to enhance the efficiency of flotation processes in the mining industry.展开更多
A novel crystal characterization instrument has been built up in which a combination of X-ray multiple diffraction and X-ray topography is applied to enabling the cross-correlation between micro-crystallographic symme...A novel crystal characterization instrument has been built up in which a combination of X-ray multiple diffraction and X-ray topography is applied to enabling the cross-correlation between micro-crystallographic symmetry and its spatial dependence in relation to lattice defects. This facility is used to examine, in a self-consistent manner, growth sector-dependant changes to both the crystallographic structure and the lattice defects associated with the action of habit-modifying additives in a number of representative crystal growth systems. In addition, the new instrument can be used to probe micro-crystallographic aspects(such as distortion to crystal symmetry) and relate these in a spatially resolved manner to the crystal defect structure in crystals doped with known habit modifiers.展开更多
In or Ga gradients in the Cu(In1-xGax)Se2(CIGS)absorbing layer lead to change the lattice parameters of the absorbing layer,giving rise to the bandgap grading in the absorbing layer which is directly associated with t...In or Ga gradients in the Cu(In1-xGax)Se2(CIGS)absorbing layer lead to change the lattice parameters of the absorbing layer,giving rise to the bandgap grading in the absorbing layer which is directly associated with the degree of absorbing ability of the CIGS solar cell.We tried to characterize the depth profile of the lattice parameters of the CIGS absorbing layer using a glancing incidence X-ray diffraction(GIXRD)technique,and then investigate the bandgap grading of the CIGS absorbing layer.When the glancing incident angle increased from 0.50 to 5.00°,the a and c lattice parameters of the CIGS absorbing layer gradually decreased from 5.7776(3)to 5.6905(2)?,and 11.3917(3)to 11.2114(2)?,respectively.The depth profile of the lattice parameters as a function of the incident angle was consistent with vertical variation in the compositionof In or Ga with depth in the absorbing layer.The variation of the lattice parameters was due to the difference between the ionic radius of In and Ga co-occupying at the same crystallographic site.According to the results of the depth profile of the refined parameters using GIXRD data,the bandgap of the CIGS absorber layer was graded over a range of 1.222-1.532 eV.This approach allows to determine the In or Ga gradients in the CIGS absorbing layer,and to nondestructively guess the bandgap depth profile through the refinement of the lattice parameters using GIXRD data on the assumption that the changes of the lattice parameters or unit-cell volume follow a good approximation to Vegard’s law.展开更多
We report here high-pressure investigations on Piplia Kalan eucrite-a member of HED (Howardite -Eucrite-Diogenite) family from asteroid 4-Vesta based on synchrotron X-ray diffraction (up to 16 GPa) and ^57Fe Mossb...We report here high-pressure investigations on Piplia Kalan eucrite-a member of HED (Howardite -Eucrite-Diogenite) family from asteroid 4-Vesta based on synchrotron X-ray diffraction (up to 16 GPa) and ^57Fe Mossbauer spectroscopy (up to 8 GPa). Dominant with anorthite-rich plagioclase, pigeonite-rich pyroxene and clino-ferrosilite, the sample displayed various phase transitions attaining amorphous character at 16 GPa. These phase transitions of individual components could be explained simultaneously through variations in high-pressure XRD patterns and the Mossbauer parameters. Most prominent P21/c to C2/c transition of pigeonite and ferrosilite was exhibited both as sudden variation in Mossbauer parameters and population inversion of Fe^2+ in M1 and M2 sites between 2.9 and 3.8 GPa and variation in intensity profile in XRD patterns at 3.56 GPa. Anorthite seemed to respond more to such impact than other components in the sample. Complete amorphization in anorthite which occurred at lower pressure of - 12 GPa implied residual stress experienced due to shock impact. The presence of high pressure (monoclinic) phase of pigeonite and ferrosilite at ambient condition in this eucrite sample confirmed earlier suggestions of an early shock event. This report is an attempt to emphasize the role of anorthite in the determination of the residual stress due to impact process in the parent body thus to understand the behavioral differences amongst HED members.展开更多
The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited o...The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.展开更多
The increased use of rechargeable batteries in portable electronic devices and the continuous develop-ment of novel applications (e.g. transportation and large scale energy storage), have raised a strong de-mand for...The increased use of rechargeable batteries in portable electronic devices and the continuous develop-ment of novel applications (e.g. transportation and large scale energy storage), have raised a strong de-mand for high performance batteries with increased energy density, cycle and calendar life, safety andlower costs. This triggers significant efforts to reveal the fundamental mechanism determining batteryperformance with the use of advanced analytical techniques. However, the inherently complex character-istics of battery systems make the mechanism analysis sophisticated and difficult. Synchrotron radiationis an advanced collimated light source with high intensity and tunable energies. It has particular ad-vantages in electronic structure and geometric structure (both the short-range and long-range structure)analysis of materials on different length and time scales. In the past decades, synchrotron X-ray tech-niques have been widely used to understand the fundamental mechanism and guide the technologicaloptimization of batteries. In particular, in situ and operando techniques with high spatial and temporalresolution, enable the nondestructive, real time dynamic investigation of the electrochemical reaction,and lead to significant deep insights into the battery operation mechanism. This review gives a brief introduction of the application of synchrotron X-ray techniques to the inves-tigation of battery systems. The five widely implicated techniques, including X-ray diffraction (XRD), PairDistribution Function (PDF), Hard and Soft X-ray absorption spectroscopy (XAS) and X-ray photoelectronspectroscopy (XPS) will be reviewed, with the emphasis on their in situ studies of battery systems during cycling.展开更多
The thermal expansion coefficients of kyanite at ambient pressure have been investigated by an X-ray powder diffraction technique with temperatures up to 1000 ℃. No phase transition was observed in the experimental t...The thermal expansion coefficients of kyanite at ambient pressure have been investigated by an X-ray powder diffraction technique with temperatures up to 1000 ℃. No phase transition was observed in the experimental temperature range. Data for the unit-cell parameters and temperatures were fitted empirically resulting in the following thermal expansion coefficients: αa = 5.8(3) × 10^-5, αb = 5.8 (1)× 10^-5, αc = 5.2(1)× 10^-5, and αv = 7.4(1) × 10^-3 ℃ 1 in good agreement with a recent neutron powder diffraction study. On the other hand, the variation of the unit-cell angles α, β and γ of kyanite with increase in temperature is very complicated, and the agreement among all studies is poor. The thermal expansion data at ambient pressure reported here and the compression data at ambient temperature from the literature suggest that, for the kyanite lattice, the most and least thermally expandable directions correspond to the most and least compressible directions, respectively.展开更多
A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, ...A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, Zr4+, Ti4+and Pb4+cations are incorporated into the lattice of tetragonal rutile SnO2 to form a solid solution structure. As a consequence, the surface area and thermal stability of the catalysts are improved. Moreover, the oxygen species of the modified catalysts become easier to be reduced. Therefore, the oxidation activity over the catalysts was improved, except for the one modified by Pb oxide. Manganese oxide demonstrates the best promotional effects for SnO2. Using an X‐ray diffraction extrapolation method, the lattice capacity of SnO2 for Mn2O3 was 0.135 g Mn2O3/g SnO2, which indicates that to form stable solid solution, only 21%Sn4+cations in the lattice can be maximally replaced by Mn3+. If the amount of Mn3+cations is over the capacity, Mn2O3 will be formed, which is not favorable for the activity of the catalysts. The Sn rich samples with only Sn‐Mn solid solution phase show higher activity than the ones with excess Mn2O3 species.展开更多
Additive manufacturing(AM)is a rapid prototyping technology based on the idea of discrete accumulation which off ers an advantage of economically fabricating a component with complex geometries in a rapid design-to-ma...Additive manufacturing(AM)is a rapid prototyping technology based on the idea of discrete accumulation which off ers an advantage of economically fabricating a component with complex geometries in a rapid design-to-manufacture cycle.However,various internal defects,such as balling,cracks,residual stress and porosity,are inevitably occurred during AM due to the complexity of laser/electron beam-powder interaction,rapid melting and solidification process,and microstructure evolution.The existence of porosity defects can potentially deteriorate the mechanical properties of selective laser melting(SLM)components,such as material stiff ness,hardness,tensile strength,and fatigue resistance performance.Synchrotron X-ray imaging and diffraction are important non-destructive means to elaborately characterize the internal defect characteristics and mechanical properties of AM parts.This paper presents a review on the application of synchrotron X-ray in identifying and verifying the quality and requirement of AM parts.Defects,microstructures and mechanical properties of printed components characterized by synchrotron X-ray imaging and diffraction are summarized in this review.Subsequently,this paper also elaborates on the online characterization of the evolution of the microstructure during AM using synchrotron X-ray imaging,and introduces the method for measuring AM stress by X-ray diffraction(XRD).Finally,the future application of synchrotron X-ray characterization in the AM is prospected.展开更多
Characterizing the microstructure and deformation mechanism associated with the performances and properties of metallic materials is of great importance in understanding the microstructure-property relationship.The pa...Characterizing the microstructure and deformation mechanism associated with the performances and properties of metallic materials is of great importance in understanding the microstructure-property relationship.The past few decades have witnessed the rapid development of characterization techniques from optical microscopy to electron microscopy,although these conventional methods are generally limited to the sample surface because of the intrinsic opaque nature of metallic materials.Advanced synchrotron radiation(SR)facilities can produce X-rays with strong penetrability and high spatiotemporal resolution,and thereby enabling the non-destructive visualization of full-field structural information in three dimensions.Tremendous endeavors were devoted to the 3 rd generation SR over the past three decades,in which X-ray beams have been focused down to 100 nm.In this paper,recent progresses on SR-related characterization technologies were reviewed,with particular emphases on the fundamentals of synchrotron X-ray imaging and synchrotron X-ray diffraction,as well as their applications in the in situ observations of material preparation(e.g.,in situ dendrite growth during solidification)and service under extreme environment(e.g.,in situ mechanics).Future innovations toward next-generation SR and newly emerging SRbased technologies such as dark-field X-ray microscopy and Bragg coherent X-ray diffraction imaging were also advocated.展开更多
X-ray diffractometry was utilized to study the mineralogical characteristics of the inhalable particles (PM10) sampled during two dust storms in Beijing city on March 18th and May 21st, 2008. We confirm, for the fir...X-ray diffractometry was utilized to study the mineralogical characteristics of the inhalable particles (PM10) sampled during two dust storms in Beijing city on March 18th and May 21st, 2008. We confirm, for the first time, that there stably exists ammonium chloride in the atmosphere when temperature is low. The total sulfates particles were affected by relative humidity. Both species and concentration of sulfates decreased first and then grew back by the end of each dust storm. Koninckite, a phosphate mineral never reported as particulate aerosol before, was identified. Meanwhile, our result shows that a chemical modification on dust minerals occurs during long range transportation. PM10 samples collected during the period of dust storms were dominated by crustal minerals such as quartz, illite/smectite, illite, chlorite, feldspar and calcite, and were notably higher in concentration than that in normal periods of time. The amounts of total sulfates, calcite and feldspar altered in each dust storm. It is derived from 24-hour isentropic backward trajectories that two dust events in spring 2008 originated in different sources.展开更多
The phase transformations during thermomechanical processing can be employed to optimize mechanical properties of β-type Ti alloys.However,such understandings are still lacking for the alloy consisting of dual β+α&...The phase transformations during thermomechanical processing can be employed to optimize mechanical properties of β-type Ti alloys.However,such understandings are still lacking for the alloy consisting of dual β+α" phases in solution-treated and quenched state.In this paper,the phase transformations in a Ti38 Nb model alloy subjected to different thermomechanical processing were investigated by using synchrotron X-ray diffraction(SXRD) experiments,and their influence on the Young’s modulus was discussed.The results indicated that highdensity dislocations introduced by cold rolling still existed after annealing at temperatures lower than 573 K,which can decrease the martensitic transformation start temperature to below room temperature.With annealing temperatures increasing,the α"→β,β→ω_(iso),and β→α phase transformations occurred successively.At annealing temperature of 473 K,the specimen consisted of a trace of α"and ω phases as well as dominant β phase which was kept to room temperature by the high density of dislocations,rather than by the chemical stabilization.As a result,an ultralow Young’s modulus of 25.9 GPa was realized.Our investigation not only provides in-depth understandings of the phase transformations during thermomechanical processing of β-type Ti alloys,but also sheds light on designing biomedical Ti alloys with ultralow Young’s modulus.展开更多
A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample ...A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample by using all diffraction peak data in the mixture sample X-ray diffraction spectrum and combining the relative intensity distribution data of each phase standard peak in JCPDS card to carry on the least square method regression analysis. It is benefit to improve the precision of quantitative phase analysis that the given single line ratio which is usually adopted is taken the place of the multi-peak match intensity ratio and is used in X-ray diffraction quantitative phase analysis of the mixture sample. By analyzing four-group mixture sample, adopting multi-peak match intensity ratio and X-ray diffraction quantitative phase analysis principle of combining the adiabatic and matrix flushing method, it is tested that the experimental results are identical with theory.展开更多
The phase evolution and thermal expansion behavior in superalloy during heating play an essential role in controlling the size and distribution of precipitates,as well as optimizing thermomechanical properties.Synchro...The phase evolution and thermal expansion behavior in superalloy during heating play an essential role in controlling the size and distribution of precipitates,as well as optimizing thermomechanical properties.Synchrotron X-ray diffraction is able to go through the interior of sample and can be carried out with in situ environment,and thus,it can obtain more statistics information in real time comparing with traditional methods,such as electron and optical microscopies.In this study,in situ heating synchrotron X-ray diffraction was carried out to study the phase evolution in a typicalγ′phase precipitation strengthened Ni-based superalloy,Waspaloy,from 29 to 1050°C.Theγ′,γ,M_(23)C_(6)and M C phases,including their lattice parameters,misfits,dissolution behavior and thermal expansion coefficients,were mainly investigated.Theγ′phase and M_(23)C_(6)carbides appeared obvious dissolution during heating and re-precipitated when the temperature dropped to room temperature.Combining with the microscopy results,we can indicate that the dissolution of M_(23)C_(6)leads to the growth of grain andγ′phase cannot be completely dissolved for the short holding time above the solution temperature.Besides,the coefficients of thermal expansions of all the phases are calculated and fitted as polynomials.展开更多
The formation cause of orange peel of aluminum-alloy automotive sheet after tensile deformation was analysed by using X-ray diffraction and electron back-scattered diffraction(EBSD).The test results showed that format...The formation cause of orange peel of aluminum-alloy automotive sheet after tensile deformation was analysed by using X-ray diffraction and electron back-scattered diffraction(EBSD).The test results showed that formation cause of surface orange peel after tensile deformation related to product texture and nonuniform deformation during the tensile process.The grain size has significant effect on deformation uniform and texture formation.Coarse grains were easy to produce nonuniform deformation and texture,which would produce surface orange peel after tensile deformation.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10875142,11079040,and 11075175)The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences(Grant Nos.KJCX2-SW-N20,KJCX2-SW-N03,and SYGNS04)
文摘This article summarizes the developments of experimental techniques for high pressure x-ray diffraction(XRD) in diamond anvil cells(DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, timeresolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF(Beijing Synchrotron Radiation Facility) and some results are also presented.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60506001, 60776047, 60976045, and 60836003)the National Basic Research Programme of China (Grant No. 2007CB936700)the National Natural Science Foundation for Distinguished Young Scholars (Grant No. 60925017)
文摘The composition and stain distributions in the InGaN epitaxial films are jointly measured by employing various x-ray diffraction (XRD) techniques, including out-of-plane XRD at special planes, in-plane grazing incidence XRD, and reciprocal space mapping (RSM). It is confirmed that the measurement of (204) reflection allows a rapid access to estimate the composition without considering the influence of biaxial strain. The two-dimensional RSM checks composition and degree of strain relaxation jointly, revealing an inhomogeneous strain distribution profile along the growth direction. As the film thickness increases from 100 nm to 450 nm, the strain status of InGaN films gradually transfers from almost fully strained to fully relaxed state and then more In atoms incorporate into the film, while the near-interface region of InGaN films remains pseudomorphic to GaN.
基金supported by the National Natural Science Foundation of China(Nos.52171098 and 51921001)the State Key Laboratory for Advanced Metals and Materials(No.2022Z-02)+1 种基金the National High-level Personnel of Special Support Program(No.ZYZZ2021001)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-03C2 and FRF-BD-20-02B).
文摘High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.
文摘Magnesium(Mg)alloys typically exhibit anisotropic mechanical behaviors due to their hexagonal close-packed(hcp)crystal structures,often leading to tension-compression asymmetries.Understanding of the asymmetrical and related deformation mechanisms is crucial for their structural applications,particularly in the lightweight transportation industries.Nevertheless,the underlying deformation mechanisms(e.g.,slip versus twinning)at each deformation stage during tension and compression have not been fully understood.In this study,we employed tensile and compressive tests on extruded Al and Mn containing Mg alloy,i.e.,an AM alloy Mg-0.6Mn-0.5Al-0.5Zn-0.4Ca,during the synchrotron X-ray diffraction.Our results show that distinct deformation behaviors and mechanisms in tension and compression are associated with the strong texture in the extruded samples:(i)The tensile deformation is dominated by dislocation slips,with activation of non-basaland<c+a>slip,but deformation twinning is suppressed.(ii)The compressive deformation shows early-stage tensile twinning,followed by dislocation slips.Twinning induces grain reorientation,leading to significant lattice strain evolution aligned with the texture.The pronounced tension-compression asymmetry is attributed to the favorable shear stress direction formed in the twinning system during compression,which facilitates the activation of tensile twins.During tension,the strain hardening rate(SHR)drops significantly after yielding due to limited activated slip systems.In contrast,the samples under compression exhibit significant increases in SHR after yielding.During compression,dislocation multiplication dominates the initial strain hardening,while twinning progressively contributes more significantly than dislocation slip at higher strains.This study improves our understanding of the tension-compression and strain hardening asymmetries in extruded AM Mg alloys.
基金supported by the State Grid Corporation Science and Technology Project(No.5419-202158503A-0-5-ZN)。
文摘The detrimental phase transformations of sodium layered transition metal oxides(Na_(x)TMO_(2))during desodiation/sodiation seriously suppress their practical applications for sodium ion batteries(SIBs).Undoubtedly,comprehensively investigating of the dynamic crystal structure evolutions of Na_(x)TMO_(2)associating with Na ions extraction/intercalation and then deeply understanding of the relationships between electrochemical performances and phase structures drawing support from advanced characterization techniques are indispensable.In-situ high-energy X-ray diffraction(HEXRD),a powerful technology to distinguish the crystal structure of electrode materials,has been widely used to identify the phase evolutions of Na_(x)TMO_(2)and then profoundly revealed the electrochemical reaction processes.In this review,we begin with the descriptions of synchrotron characterization techniques and then present the advantages of synchrotron X-ray diffraction(XRD)over conventional XRD in detail.The optimizations of structural stability and electrochemical properties for P2-,O3-,and P2/O3-type Na_(x)TMO_(2)cathodes through single/dual-site substitution,high-entropy design,phase composition regulation,and surface engineering are summarized.The dynamic crystal structure evolutions of Na_(x)TMO_(2)polytypes during Na ion extraction/intercalation as well as corresponding structural enhancement mechanisms characterizing by means of HEXRD are concluded.The interior relationships between structure/component of Na_(x)TMO_(2)polytypes and their electrochemical properties are discussed.Finally,we look forward the research directions and issues in the route to improve the electrochemical properties of Na_(x)TMO_(2)cathodes for SIBs in the future and the combined utilizations of multiple characterization techniques.This review will provide significant guidelines for rational designs of high-performance Na_(x)TMO_(2)cathodes.
基金supported by the Australian Research Council Linkage Project(No.LP200200717)co sponsored by Newmont Corporation(United States)and Vega Industries(India)+1 种基金the Powder Diffraction Beamline at the Australia’s Nuclear Science and Technology Organisation(No.PDR19870),Australiathe Centre for Microscopy and Microanalysis at the University of Queensland(No.1366),Australia。
文摘Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and quantifying these superstructures hinder the optimization of pyrrhotite depression in flotation processes.To address this critical issue,synchrotron X-ray powder diffraction(S-XRPD)with Rietveld refinement was employed to quantify the distribution of superstructures in the feed and flotation concentrates of a copper–gold ore.To elucidate the mechanisms influencing depression,density functional theory(DFT)calculations were conducted to explore the electronic structures and surface reactivity of the pyrrhotite superstructures toward the adsorption of water,oxygen and hydroxyl ions(OH-)as dominant species present in the flotation process.S-XRPD analysis revealed that flotation recovery rates of pyrrhotite followed the order of 4C<6C<5C.DFT calculations indicated that the Fe 3d and S 3p orbital band centers exhibited a similar trend relative to the Fermi level with 4C being the closest.The Fe3d band center suggested that the 4C structure possessed a more reactive surface toward the oxygen reduction reaction,promoting the formation of hydrophilic Fe-OH sites.The S 3p band center order also implied that xanthate on the non-magnetic 5C and 6C surfaces could oxidize to dixanthogen,increasing hydrophobicity and floatability,while 4C formed less hydrophobic metal-xanthate complexes.Adsorption energy and charge transfer analyses of water,hydroxyl ions and molecular oxygen further supported the high reactivity and hydrophilic nature of 4C pyrrhotite.The strong bonding with hydroxyl ions indicated enhanced surface passivation by hydrophilic Fe–OOH complexes,aligning with the experimentally observed flotation order(4C<6C<5C).These findings provide a compelling correlation between experimental flotation results and electronic structure calculations,delivering crucial insights for optimizing flotation processes and improving pyrrhotite depression.This breakthrough opens up new opportunities to enhance the efficiency of flotation processes in the mining industry.
基金Supported by EPSRC,the UK Research Council(No. GRIR 6 5 787)
文摘A novel crystal characterization instrument has been built up in which a combination of X-ray multiple diffraction and X-ray topography is applied to enabling the cross-correlation between micro-crystallographic symmetry and its spatial dependence in relation to lattice defects. This facility is used to examine, in a self-consistent manner, growth sector-dependant changes to both the crystallographic structure and the lattice defects associated with the action of habit-modifying additives in a number of representative crystal growth systems. In addition, the new instrument can be used to probe micro-crystallographic aspects(such as distortion to crystal symmetry) and relate these in a spatially resolved manner to the crystal defect structure in crystals doped with known habit modifiers.
基金supported by Korea Research Institute of Standards and Science(KRISS–2019–GP2019-0014)。
文摘In or Ga gradients in the Cu(In1-xGax)Se2(CIGS)absorbing layer lead to change the lattice parameters of the absorbing layer,giving rise to the bandgap grading in the absorbing layer which is directly associated with the degree of absorbing ability of the CIGS solar cell.We tried to characterize the depth profile of the lattice parameters of the CIGS absorbing layer using a glancing incidence X-ray diffraction(GIXRD)technique,and then investigate the bandgap grading of the CIGS absorbing layer.When the glancing incident angle increased from 0.50 to 5.00°,the a and c lattice parameters of the CIGS absorbing layer gradually decreased from 5.7776(3)to 5.6905(2)?,and 11.3917(3)to 11.2114(2)?,respectively.The depth profile of the lattice parameters as a function of the incident angle was consistent with vertical variation in the compositionof In or Ga with depth in the absorbing layer.The variation of the lattice parameters was due to the difference between the ionic radius of In and Ga co-occupying at the same crystallographic site.According to the results of the depth profile of the refined parameters using GIXRD data,the bandgap of the CIGS absorber layer was graded over a range of 1.222-1.532 eV.This approach allows to determine the In or Ga gradients in the CIGS absorbing layer,and to nondestructively guess the bandgap depth profile through the refinement of the lattice parameters using GIXRD data on the assumption that the changes of the lattice parameters or unit-cell volume follow a good approximation to Vegard’s law.
基金Council of Scientific and Industrial Research(CSIR),PLANEX program of India Space Research Organization,Department of Space(Government of India),CSR-SHORE-PSC-02005 and ISRO projects(GP)for funding, CSIR for providing Emeritus Scientist Fellowship(UC)
文摘We report here high-pressure investigations on Piplia Kalan eucrite-a member of HED (Howardite -Eucrite-Diogenite) family from asteroid 4-Vesta based on synchrotron X-ray diffraction (up to 16 GPa) and ^57Fe Mossbauer spectroscopy (up to 8 GPa). Dominant with anorthite-rich plagioclase, pigeonite-rich pyroxene and clino-ferrosilite, the sample displayed various phase transitions attaining amorphous character at 16 GPa. These phase transitions of individual components could be explained simultaneously through variations in high-pressure XRD patterns and the Mossbauer parameters. Most prominent P21/c to C2/c transition of pigeonite and ferrosilite was exhibited both as sudden variation in Mossbauer parameters and population inversion of Fe^2+ in M1 and M2 sites between 2.9 and 3.8 GPa and variation in intensity profile in XRD patterns at 3.56 GPa. Anorthite seemed to respond more to such impact than other components in the sample. Complete amorphization in anorthite which occurred at lower pressure of - 12 GPa implied residual stress experienced due to shock impact. The presence of high pressure (monoclinic) phase of pigeonite and ferrosilite at ambient condition in this eucrite sample confirmed earlier suggestions of an early shock event. This report is an attempt to emphasize the role of anorthite in the determination of the residual stress due to impact process in the parent body thus to understand the behavioral differences amongst HED members.
基金Project (51005154) supported by the National Natural Science Foundation of ChinaProject (12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission, ChinaProject (201104271) supported by the China Postdoctoral Science Foundation
文摘The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.
基金the National Natural Science Foundation of China (Grant nos.21233004,21303147 and 21473148,etc.)the National Key Research and Development Program (Grant no.2016YFB0901500)
文摘The increased use of rechargeable batteries in portable electronic devices and the continuous develop-ment of novel applications (e.g. transportation and large scale energy storage), have raised a strong de-mand for high performance batteries with increased energy density, cycle and calendar life, safety andlower costs. This triggers significant efforts to reveal the fundamental mechanism determining batteryperformance with the use of advanced analytical techniques. However, the inherently complex character-istics of battery systems make the mechanism analysis sophisticated and difficult. Synchrotron radiationis an advanced collimated light source with high intensity and tunable energies. It has particular ad-vantages in electronic structure and geometric structure (both the short-range and long-range structure)analysis of materials on different length and time scales. In the past decades, synchrotron X-ray tech-niques have been widely used to understand the fundamental mechanism and guide the technologicaloptimization of batteries. In particular, in situ and operando techniques with high spatial and temporalresolution, enable the nondestructive, real time dynamic investigation of the electrochemical reaction,and lead to significant deep insights into the battery operation mechanism. This review gives a brief introduction of the application of synchrotron X-ray techniques to the inves-tigation of battery systems. The five widely implicated techniques, including X-ray diffraction (XRD), PairDistribution Function (PDF), Hard and Soft X-ray absorption spectroscopy (XAS) and X-ray photoelectronspectroscopy (XPS) will be reviewed, with the emphasis on their in situ studies of battery systems during cycling.
基金financially supported by the Natural Science Foundation of China(Grant 40872033)the Fundamental Research Funds for the Central Universities(to XL)the Natural Sciences and Engineering Research Council of Canada(to MF)
文摘The thermal expansion coefficients of kyanite at ambient pressure have been investigated by an X-ray powder diffraction technique with temperatures up to 1000 ℃. No phase transition was observed in the experimental temperature range. Data for the unit-cell parameters and temperatures were fitted empirically resulting in the following thermal expansion coefficients: αa = 5.8(3) × 10^-5, αb = 5.8 (1)× 10^-5, αc = 5.2(1)× 10^-5, and αv = 7.4(1) × 10^-3 ℃ 1 in good agreement with a recent neutron powder diffraction study. On the other hand, the variation of the unit-cell angles α, β and γ of kyanite with increase in temperature is very complicated, and the agreement among all studies is poor. The thermal expansion data at ambient pressure reported here and the compression data at ambient temperature from the literature suggest that, for the kyanite lattice, the most and least thermally expandable directions correspond to the most and least compressible directions, respectively.
基金supported by the National Natural Science Foundation of China (21263015,21567016 and 21503106)the Education Department Foundation of Jiangxi Province (KJLD14005 and GJJ150016)the Natural Science Foundation of Jiangxi Province (20142BAB213013 and 20151BBE50006),which are greatly acknowledged by the authors~~
文摘A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, Zr4+, Ti4+and Pb4+cations are incorporated into the lattice of tetragonal rutile SnO2 to form a solid solution structure. As a consequence, the surface area and thermal stability of the catalysts are improved. Moreover, the oxygen species of the modified catalysts become easier to be reduced. Therefore, the oxidation activity over the catalysts was improved, except for the one modified by Pb oxide. Manganese oxide demonstrates the best promotional effects for SnO2. Using an X‐ray diffraction extrapolation method, the lattice capacity of SnO2 for Mn2O3 was 0.135 g Mn2O3/g SnO2, which indicates that to form stable solid solution, only 21%Sn4+cations in the lattice can be maximally replaced by Mn3+. If the amount of Mn3+cations is over the capacity, Mn2O3 will be formed, which is not favorable for the activity of the catalysts. The Sn rich samples with only Sn‐Mn solid solution phase show higher activity than the ones with excess Mn2O3 species.
基金financially supported by the National Nature Science Foundation of China(No.51701112)the National Key Research and Development Program of China(No.2019YFA0705300)+2 种基金the Shanghai Rising-Star Program(Nos.20QA1403800 and 21QC1401500)the Shanghai Science and Technology Committee(No.19DZ1100704)the open fund of State Key Laboratory of Solidifi cation Processing in NWPU(Grant No.SKLSP202107)。
文摘Additive manufacturing(AM)is a rapid prototyping technology based on the idea of discrete accumulation which off ers an advantage of economically fabricating a component with complex geometries in a rapid design-to-manufacture cycle.However,various internal defects,such as balling,cracks,residual stress and porosity,are inevitably occurred during AM due to the complexity of laser/electron beam-powder interaction,rapid melting and solidification process,and microstructure evolution.The existence of porosity defects can potentially deteriorate the mechanical properties of selective laser melting(SLM)components,such as material stiff ness,hardness,tensile strength,and fatigue resistance performance.Synchrotron X-ray imaging and diffraction are important non-destructive means to elaborately characterize the internal defect characteristics and mechanical properties of AM parts.This paper presents a review on the application of synchrotron X-ray in identifying and verifying the quality and requirement of AM parts.Defects,microstructures and mechanical properties of printed components characterized by synchrotron X-ray imaging and diffraction are summarized in this review.Subsequently,this paper also elaborates on the online characterization of the evolution of the microstructure during AM using synchrotron X-ray imaging,and introduces the method for measuring AM stress by X-ray diffraction(XRD).Finally,the future application of synchrotron X-ray characterization in the AM is prospected.
基金financially supported by the National Key Research and Development Plan(Grant Nos.2020YFA0405900,2017YFA0403803)the National Natural Science Foundation of China(Grant No.51927801)the Natural Science Foundation of Jiangsu Province(Grant No.BK20202010)。
文摘Characterizing the microstructure and deformation mechanism associated with the performances and properties of metallic materials is of great importance in understanding the microstructure-property relationship.The past few decades have witnessed the rapid development of characterization techniques from optical microscopy to electron microscopy,although these conventional methods are generally limited to the sample surface because of the intrinsic opaque nature of metallic materials.Advanced synchrotron radiation(SR)facilities can produce X-rays with strong penetrability and high spatiotemporal resolution,and thereby enabling the non-destructive visualization of full-field structural information in three dimensions.Tremendous endeavors were devoted to the 3 rd generation SR over the past three decades,in which X-ray beams have been focused down to 100 nm.In this paper,recent progresses on SR-related characterization technologies were reviewed,with particular emphases on the fundamentals of synchrotron X-ray imaging and synchrotron X-ray diffraction,as well as their applications in the in situ observations of material preparation(e.g.,in situ dendrite growth during solidification)and service under extreme environment(e.g.,in situ mechanics).Future innovations toward next-generation SR and newly emerging SRbased technologies such as dark-field X-ray microscopy and Bragg coherent X-ray diffraction imaging were also advocated.
基金supported by the National Natural Science Foundation of China(No.40972033, 40872034,40572032)the 15th and 16th Laboratory Funds of Peking University
文摘X-ray diffractometry was utilized to study the mineralogical characteristics of the inhalable particles (PM10) sampled during two dust storms in Beijing city on March 18th and May 21st, 2008. We confirm, for the first time, that there stably exists ammonium chloride in the atmosphere when temperature is low. The total sulfates particles were affected by relative humidity. Both species and concentration of sulfates decreased first and then grew back by the end of each dust storm. Koninckite, a phosphate mineral never reported as particulate aerosol before, was identified. Meanwhile, our result shows that a chemical modification on dust minerals occurs during long range transportation. PM10 samples collected during the period of dust storms were dominated by crustal minerals such as quartz, illite/smectite, illite, chlorite, feldspar and calcite, and were notably higher in concentration than that in normal periods of time. The amounts of total sulfates, calcite and feldspar altered in each dust storm. It is derived from 24-hour isentropic backward trajectories that two dust events in spring 2008 originated in different sources.
基金financially supported by the Fundamental Research Funds for the Central Universities (No.2017QNA04)。
文摘The phase transformations during thermomechanical processing can be employed to optimize mechanical properties of β-type Ti alloys.However,such understandings are still lacking for the alloy consisting of dual β+α" phases in solution-treated and quenched state.In this paper,the phase transformations in a Ti38 Nb model alloy subjected to different thermomechanical processing were investigated by using synchrotron X-ray diffraction(SXRD) experiments,and their influence on the Young’s modulus was discussed.The results indicated that highdensity dislocations introduced by cold rolling still existed after annealing at temperatures lower than 573 K,which can decrease the martensitic transformation start temperature to below room temperature.With annealing temperatures increasing,the α"→β,β→ω_(iso),and β→α phase transformations occurred successively.At annealing temperature of 473 K,the specimen consisted of a trace of α"and ω phases as well as dominant β phase which was kept to room temperature by the high density of dislocations,rather than by the chemical stabilization.As a result,an ultralow Young’s modulus of 25.9 GPa was realized.Our investigation not only provides in-depth understandings of the phase transformations during thermomechanical processing of β-type Ti alloys,but also sheds light on designing biomedical Ti alloys with ultralow Young’s modulus.
文摘A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample by using all diffraction peak data in the mixture sample X-ray diffraction spectrum and combining the relative intensity distribution data of each phase standard peak in JCPDS card to carry on the least square method regression analysis. It is benefit to improve the precision of quantitative phase analysis that the given single line ratio which is usually adopted is taken the place of the multi-peak match intensity ratio and is used in X-ray diffraction quantitative phase analysis of the mixture sample. By analyzing four-group mixture sample, adopting multi-peak match intensity ratio and X-ray diffraction quantitative phase analysis principle of combining the adiabatic and matrix flushing method, it is tested that the experimental results are identical with theory.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.11805009 and 51921001)the Fundamental Research Funds for the Central Universities(Grant No.06111020)。
文摘The phase evolution and thermal expansion behavior in superalloy during heating play an essential role in controlling the size and distribution of precipitates,as well as optimizing thermomechanical properties.Synchrotron X-ray diffraction is able to go through the interior of sample and can be carried out with in situ environment,and thus,it can obtain more statistics information in real time comparing with traditional methods,such as electron and optical microscopies.In this study,in situ heating synchrotron X-ray diffraction was carried out to study the phase evolution in a typicalγ′phase precipitation strengthened Ni-based superalloy,Waspaloy,from 29 to 1050°C.Theγ′,γ,M_(23)C_(6)and M C phases,including their lattice parameters,misfits,dissolution behavior and thermal expansion coefficients,were mainly investigated.Theγ′phase and M_(23)C_(6)carbides appeared obvious dissolution during heating and re-precipitated when the temperature dropped to room temperature.Combining with the microscopy results,we can indicate that the dissolution of M_(23)C_(6)leads to the growth of grain andγ′phase cannot be completely dissolved for the short holding time above the solution temperature.Besides,the coefficients of thermal expansions of all the phases are calculated and fitted as polynomials.
文摘The formation cause of orange peel of aluminum-alloy automotive sheet after tensile deformation was analysed by using X-ray diffraction and electron back-scattered diffraction(EBSD).The test results showed that formation cause of surface orange peel after tensile deformation related to product texture and nonuniform deformation during the tensile process.The grain size has significant effect on deformation uniform and texture formation.Coarse grains were easy to produce nonuniform deformation and texture,which would produce surface orange peel after tensile deformation.