In order to study the influence of crystal structure change due to implantation dose on the hardness and wear performance of 300M high-strength steel,samples were surface modified by Cr implantation with dosages of 5....In order to study the influence of crystal structure change due to implantation dose on the hardness and wear performance of 300M high-strength steel,samples were surface modified by Cr implantation with dosages of 5.0 × 10^16,1.5 × 10^17 and 3.0 × 10^17 ions/cm^2.X-ray diffraction method,which was already applied in studies on the microstructure of deformed and heat-treated materials,was used to study the crystal structure of the implanted steel,and the results were corrected with the hardness and wear performance.The solid solution strengthening effect and microstructure vary with increase in implantation dose.Owing to strong solid solution hardening of Cr,small average crystallite size and high dislocation density,the hardness and wear resistance of implanted steel with dose of 5.0 × 10^16 ions/cm^2 were found to be the highest compared with other samples.Moreover,although the crystal lite size of the implanted sample with dose of 3 × 10^17 ions/cm^2 was similar to that of substrate and the dislocation density was lower than that of the substrate,its higher hardness and lower specific wear rate were due to the solid solution hardening and perhaps Cr clusters reinforcement.展开更多
By means of the intensity theory of X-ray scattering and the two-phase concept of high polymer, the basic formula of the crystaUinity in block copolymers has been proposed after the corrections of atomic, temperature,...By means of the intensity theory of X-ray scattering and the two-phase concept of high polymer, the basic formula of the crystaUinity in block copolymers has been proposed after the corrections of atomic, temperature, absorption, Lorentz and polarization factor. Application of this method to different type poly (oxyethylene-styrene)block copolymers and the same type block copolymers with different EO contents indicates that the crystallinity in poly (oxyethylene-styrene ) block copolymers increases with the increase of the EO content and decreases in the order: PEO-PS-PEO>PEO-PS>PS-PEO-PS.展开更多
When measuring residual stress of coarse-grain aluminum alloy using X-ray diffraction method, the diffraction profile shows two peaks and position of measured 20 will be changed, which lead to an inaccurate measuremen...When measuring residual stress of coarse-grain aluminum alloy using X-ray diffraction method, the diffraction profile shows two peaks and position of measured 20 will be changed, which lead to an inaccurate measurement result. Hence, in this paper, some methods were employed to improve the measurement accuracy. During the measuring process, different parameters (diameter of irradiated area, Ψ-oscillation range and exposure time) were selected and profile peak shift method was utilized. Moreover, when the 20 of profiles was determined, different calculation methods were used to calculate the residual stress. The results show that diameter of irradiated area and Ψ-oscillation range have significant influence on the measuring result. For stress value calculated directly from the test equipment, cross correlation method is more accurate than the absolute peak. Furthermore, another two calculation methods of slope with 2θ- sin^2Ψ and ε- sin^2Ψwere used to calculate the stress based on parameters (2θ, ε) obtained from cross correlation method. It is concluded that 2θ - sin^2Ψ method can further improve the measurement accuracy.展开更多
Kanglemeisu A (C50H63O19N·CH3OH) is the product of an actinomyces species from a soil sample gathered in China. Kanglemeisu A belongs to the triclinic system, space group P1,unit cell:a=12.760(3), b=10.287(2)...Kanglemeisu A (C50H63O19N·CH3OH) is the product of an actinomyces species from a soil sample gathered in China. Kanglemeisu A belongs to the triclinic system, space group P1,unit cell:a=12.760(3), b=10.287(2), c=9.926(2) , α=88.39(2),β=78.64(2), γ=89.14(2). RANTAN direct method is used to solve the structure.The final discrepancy factor is R=0.0689, after atom coordinates and temperature factors have been refined with full matrix least squares.The structure skeleton consists of four parts, the naphthalene nucleus connected to the 5-membered ring, a 17-membered ring connected to C2, a dimethyl butane diacid extended out from C20, β-D-3,4-OO’ methylenedigitoxose passing through an oxygen bridge O6 and linked to C27 of ansa ring.展开更多
A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, ...A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, Zr4+, Ti4+and Pb4+cations are incorporated into the lattice of tetragonal rutile SnO2 to form a solid solution structure. As a consequence, the surface area and thermal stability of the catalysts are improved. Moreover, the oxygen species of the modified catalysts become easier to be reduced. Therefore, the oxidation activity over the catalysts was improved, except for the one modified by Pb oxide. Manganese oxide demonstrates the best promotional effects for SnO2. Using an X‐ray diffraction extrapolation method, the lattice capacity of SnO2 for Mn2O3 was 0.135 g Mn2O3/g SnO2, which indicates that to form stable solid solution, only 21%Sn4+cations in the lattice can be maximally replaced by Mn3+. If the amount of Mn3+cations is over the capacity, Mn2O3 will be formed, which is not favorable for the activity of the catalysts. The Sn rich samples with only Sn‐Mn solid solution phase show higher activity than the ones with excess Mn2O3 species.展开更多
The detrimental phase transformations of sodium layered transition metal oxides(Na_(x)TMO_(2))during desodiation/sodiation seriously suppress their practical applications for sodium ion batteries(SIBs).Undoubtedly,com...The detrimental phase transformations of sodium layered transition metal oxides(Na_(x)TMO_(2))during desodiation/sodiation seriously suppress their practical applications for sodium ion batteries(SIBs).Undoubtedly,comprehensively investigating of the dynamic crystal structure evolutions of Na_(x)TMO_(2)associating with Na ions extraction/intercalation and then deeply understanding of the relationships between electrochemical performances and phase structures drawing support from advanced characterization techniques are indispensable.In-situ high-energy X-ray diffraction(HEXRD),a powerful technology to distinguish the crystal structure of electrode materials,has been widely used to identify the phase evolutions of Na_(x)TMO_(2)and then profoundly revealed the electrochemical reaction processes.In this review,we begin with the descriptions of synchrotron characterization techniques and then present the advantages of synchrotron X-ray diffraction(XRD)over conventional XRD in detail.The optimizations of structural stability and electrochemical properties for P2-,O3-,and P2/O3-type Na_(x)TMO_(2)cathodes through single/dual-site substitution,high-entropy design,phase composition regulation,and surface engineering are summarized.The dynamic crystal structure evolutions of Na_(x)TMO_(2)polytypes during Na ion extraction/intercalation as well as corresponding structural enhancement mechanisms characterizing by means of HEXRD are concluded.The interior relationships between structure/component of Na_(x)TMO_(2)polytypes and their electrochemical properties are discussed.Finally,we look forward the research directions and issues in the route to improve the electrochemical properties of Na_(x)TMO_(2)cathodes for SIBs in the future and the combined utilizations of multiple characterization techniques.This review will provide significant guidelines for rational designs of high-performance Na_(x)TMO_(2)cathodes.展开更多
Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and ...Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and quantifying these superstructures hinder the optimization of pyrrhotite depression in flotation processes.To address this critical issue,synchrotron X-ray powder diffraction(S-XRPD)with Rietveld refinement was employed to quantify the distribution of superstructures in the feed and flotation concentrates of a copper–gold ore.To elucidate the mechanisms influencing depression,density functional theory(DFT)calculations were conducted to explore the electronic structures and surface reactivity of the pyrrhotite superstructures toward the adsorption of water,oxygen and hydroxyl ions(OH-)as dominant species present in the flotation process.S-XRPD analysis revealed that flotation recovery rates of pyrrhotite followed the order of 4C<6C<5C.DFT calculations indicated that the Fe 3d and S 3p orbital band centers exhibited a similar trend relative to the Fermi level with 4C being the closest.The Fe3d band center suggested that the 4C structure possessed a more reactive surface toward the oxygen reduction reaction,promoting the formation of hydrophilic Fe-OH sites.The S 3p band center order also implied that xanthate on the non-magnetic 5C and 6C surfaces could oxidize to dixanthogen,increasing hydrophobicity and floatability,while 4C formed less hydrophobic metal-xanthate complexes.Adsorption energy and charge transfer analyses of water,hydroxyl ions and molecular oxygen further supported the high reactivity and hydrophilic nature of 4C pyrrhotite.The strong bonding with hydroxyl ions indicated enhanced surface passivation by hydrophilic Fe–OOH complexes,aligning with the experimentally observed flotation order(4C<6C<5C).These findings provide a compelling correlation between experimental flotation results and electronic structure calculations,delivering crucial insights for optimizing flotation processes and improving pyrrhotite depression.This breakthrough opens up new opportunities to enhance the efficiency of flotation processes in the mining industry.展开更多
A uranyl compound, K_4UO_2(CO_3)_3 has been characterized by powder X-ray diffraction method. M. W.=606.46, monoclinic, C2/c (No. 15), a=1.0240(7), b=0.9198(4), c=1.2222(12)nm, β=95.12(4)°,V=1.1466(5)nm^3, Z=4, ...A uranyl compound, K_4UO_2(CO_3)_3 has been characterized by powder X-ray diffraction method. M. W.=606.46, monoclinic, C2/c (No. 15), a=1.0240(7), b=0.9198(4), c=1.2222(12)nm, β=95.12(4)°,V=1.1466(5)nm^3, Z=4, D_m=3.468g/cm^3, D_c=3.513g/cm~, λ(Cu Kα_1)=O.1540598nm, T=298K. The structure was solved by heavy atom method and Fourier synthesis, and refined by full- matrix least-squares method to R=0.1185 for 275 reflections. The uranium (Ⅵ) atom is in an eight-coordinate distorted hexagonal-bipyramidal environment with creasy fan shape. The linear uranyl group approaches to perpendicular to the equatorial plane in which three carbonate groups are chelated. U(Ⅵ) has two linear oxygen atoms closer to it (U-O=0.1767 (5) nm) than six other neighbours (U-O ranging from 0.2516 to 0.2568nm). The distances between carbon atoms and uncoordinated oxygen atoms are 0.122 (1) and 0.123(1) nm, which are distinctly different from those between carbon and coordinated oxygen atoms (mean 0.134(6) nm). This fact reveals the non-eq- uivalence of one oxygen atom to the other two in each carbonate. In K_4UO_2(CO_3)_3, the O-O dis- tance for the adjacent carbonate groups is 0.2794(4)nm approaching to the sum of Van der Waals radii of two oxygen atoms. The K-O distances vary between 0.2667 and 0.3131nm, and each anion is immediately surrounded by six potassium ions, only four of which can be considered to belong to the same structural formula unit, and they are symmetrically located above and below the equatorial plane.展开更多
A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample ...A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample by using all diffraction peak data in the mixture sample X-ray diffraction spectrum and combining the relative intensity distribution data of each phase standard peak in JCPDS card to carry on the least square method regression analysis. It is benefit to improve the precision of quantitative phase analysis that the given single line ratio which is usually adopted is taken the place of the multi-peak match intensity ratio and is used in X-ray diffraction quantitative phase analysis of the mixture sample. By analyzing four-group mixture sample, adopting multi-peak match intensity ratio and X-ray diffraction quantitative phase analysis principle of combining the adiabatic and matrix flushing method, it is tested that the experimental results are identical with theory.展开更多
The influence of replacement level of calcined coal-series kaolin(CCK) on hydration of ordinary Portland cement(OPC) was studied by X-ray diffraction(XRD)/Rietveld method. X-ray diffraction/Rietveld method was used to...The influence of replacement level of calcined coal-series kaolin(CCK) on hydration of ordinary Portland cement(OPC) was studied by X-ray diffraction(XRD)/Rietveld method. X-ray diffraction/Rietveld method was used to quantify the crystalline phase composition of the hydrated samples. Additionally, the morphology of hydrated samples was observed by scanning electron microscopy(SEM). The results showed that, calcium hydroxide(CH), ettringite(AFt) and amorphous phase content in hydrated samples decreased as the replacement level of CCK increased, while AFm and str?tlingite increased, which was caused by the combination of dilute, physical and pozzolanic effects. The hydration of anhydrous cement phases was accelerated by physical effect but hindered by the retardation effect of CCK. The role of each effects was discussed in detail to analyze the mechanism of OPC hydration with CCK addition. The SEM images showed that the shortening of AFt at 1 day and the denser texture at 28 days was observed with CCK addition, which was caused by the physical and pozzolanic effects, respectively.展开更多
LiNi0.9Co0.15Al0.05O2 (NCA) material is successfully synthesized with a modified co-precipitation method,in which NH3,H2O and EDTA are used as two chelating agents. The obtained LiNi0.9Co0.15Al0.05O2 materialhas wel...LiNi0.9Co0.15Al0.05O2 (NCA) material is successfully synthesized with a modified co-precipitation method,in which NH3,H2O and EDTA are used as two chelating agents. The obtained LiNi0.9Co0.15Al0.05O2 materialhas well-defined layered structure and uniform element distribution, which reveals an enhanced electro-chemical performance with a capacity retention of 97.9% after 100 cycles at 0.2 C, and reduced thermalrunaway from the isothermal calorimetry test. In situ X-ray diffraction (XRD) was employed to capturethe structural changes during the charge-discharge process. The reversible evolutions of lattice parame-ters (a, b, c, and V) further verify the structural stability.展开更多
Fitting of full X-ray diffraction patterns is an effective method for quantifying abundances during X-ray diffraction (XRD) analyses. The method is based on the principal that the observed diffraction pattern is the s...Fitting of full X-ray diffraction patterns is an effective method for quantifying abundances during X-ray diffraction (XRD) analyses. The method is based on the principal that the observed diffraction pattern is the sum of the individual phases that compose the sample. By adding an internal standard (usually corundum) to both the observed patterns and to those for individual pure phases (standards), all patterns can all be normalized to an equivalent intensity based on the internal standard intensity. Using least-squares refinement, the individual phase proportions are varied until an optimal match is reached. As the fitting of full patterns uses the entire pattern, including background, disordered and amorphous phases are explicitly considered as individual phases, with their individual intensity profiles or “amorphous humps” included in the refinement. The method can be applied not only to samples that contain well-ordered materials, but it is particularly well suited for samples containing amorphous and/or disordered materials. In cases with extremely disordered materials where no crystal structure is available for Rietveld refinement or there is no unique intensity area that can be measured for a traditional RIR analysis, full-pattern fitting may be the best or only way to readily obtain quantitative results. This approach is also applicable in cases where there are several coexisting highly disordered phases. As all phases are considered as discrete individual components, abundances are not constrained to sum to 100%.展开更多
A new method for quantitative X-ray diffraction phase analysis of a powder misture has been developed according to Popovic's doping method. The weight fraction of amorphous material in the analysed sample is obtai...A new method for quantitative X-ray diffraction phase analysis of a powder misture has been developed according to Popovic's doping method. The weight fraction of amorphous material in the analysed sample is obtained. For a multicomponent system in which (n-2) pure phases are added into an n-phase compnent sample and theweight fractions of all n phases can be determined by the method. The test results of confirmation agree well with the theory.展开更多
Based on analysis on X-ray diffraction, the metamorphic grade of coal in southeast Qinshui Basin was discussed, and a precise evaluation of coal rank through XRD analysis was made, in addition, the correlation of coal...Based on analysis on X-ray diffraction, the metamorphic grade of coal in southeast Qinshui Basin was discussed, and a precise evaluation of coal rank through XRD analysis was made, in addition, the correlation of coal rank and vitrinite reflectance (Ro) was compared. XRD spectra of coal shows (002)-band and γ-band, and based on fitting calculation and multi-peak separation methods, the values of 2θ002 and 2θγ can be obtained, as well as corresponding intensities I002 and Iγ, consequently the coal rank can be quantized as the ratio of I002 and Iγ, that is coal rank=I002/Iγ. The research shows that the values of θ002 and θγ increase with the metamorphic grade, and a very good linear positive correlation exists between calculated Coal Rank and Ro.展开更多
Asbestos is widely applied in such sectors as manufacturing automobiles, tractors, chemical industrial equipment, and electric equipment. Asbestos fiber is harmful to human health. Therefore, the technology of testing...Asbestos is widely applied in such sectors as manufacturing automobiles, tractors, chemical industrial equipment, and electric equipment. Asbestos fiber is harmful to human health. Therefore, the technology of testing for asbestos in products is especially important. At present, in our country’s national specifications, there is no determination method or specification that is applicable to the asbestos in electronic and electric products. In this article, the components of asbestos in electronic and electric products are identified using the method of combining polarizing microscope with X-ray diffractometer. This method is simple, fast, highly reliable, and suitable to be widely adopted.展开更多
Some meaningful advances have been made these last years to value precise and reliable way the residual stresses experimentally created by the autofrettage. The autofrettage process is used widely to introduce residua...Some meaningful advances have been made these last years to value precise and reliable way the residual stresses experimentally created by the autofrettage. The autofrettage process is used widely to introduce residual stresses into thick walled tubes;traditionally residual stresses have been measured using the Sachs method destructive or non-destructive methods. In this paper we describe the application of the X-rays diffraction;this technique permits to justify the presence of the compressive tangential residual stresses, and to value their distribution after two different autofrettage internal pressures loading. The results show that there is a large difference in the residual stresses find in the different autofrettege pressure. One can see the influence of the autofrettage’s pressure quantity on residual stresses created in the thickness of the test tubes.展开更多
The Energy Dispersive X-ray Diffraction, generally referred as EDXD, has shown to be a valid alternative to the conventional Angular Dispersive X-ray Diffraction, the ADXD. EDXD exhibits several advantages to its AD c...The Energy Dispersive X-ray Diffraction, generally referred as EDXD, has shown to be a valid alternative to the conventional Angular Dispersive X-ray Diffraction, the ADXD. EDXD exhibits several advantages to its AD counterpart, mainly related to the properties of the polychromatic X-ray beam utilized for diffracting, such as higher signal intensities, a wider accessible region of the reciprocal space, a greater transparency of samples, and a parallel data collection of the q-points in the diffraction pattern acquisition. However, the main drawback of poly-chromaticity lays in the fact that the quantities that modulate the scattered intensity in a diffraction measurement depend on the energy. These quantities are the primary X-ray beam spectrum, polarization, and X-ray absorption, the last producing by far the most critical effect because it rapidly changes as a function of energy. Therefore, a detailed knowledge of the energy dependence of all these quantities is required in EDXD in order to process the data correctly and prevent systematic errors. The difficulty in handling the energy-dependent factors complicates the experimental procedure and may make the measurements unreliable. In the present paper, a hybrid method between the ED and AD X-ray Diffraction is proposed to maintain the advantages of the polychromatic nature of the radiation utilized in EDXD, while preventing the problems produced by the energy-dependent quantities.展开更多
The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited o...The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.展开更多
In order to accurately identify the rock, it is necessary to study the identification method of the rock. The rock identification method, the thin slice microscopic image technique, the electron probe analysis method ...In order to accurately identify the rock, it is necessary to study the identification method of the rock. The rock identification method, the thin slice microscopic image technique, the electron probe analysis method or the X-ray powder crystal diffraction method cannot accurately determine the rock. An X-ray powder diffraction method combined with thin-film microscopic image technique and rock identification method was proposed. The X-ray powder diffraction method was combined with the thin-film microscopic image technique to identify the rock, and the microscopic image technique was used to determine the rock. The particle size, structure, shape, mineral color and structure, determine the type of rock, and then determine the mineral and mineral content of the rock by X-ray powder diffraction method, name the rock, and complete the identification of the rock. The experimental results show that the X-ray powder diffraction method or the thin-film microscopic image technique can not accurately determine the rock and combine the X-ray powder diffraction method with the thin-film microscopic image technology to identify the rock. Improve the accuracy of rock identification results.展开更多
The thermal expansion coefficients of kyanite at ambient pressure have been investigated by an X-ray powder diffraction technique with temperatures up to 1000 ℃. No phase transition was observed in the experimental t...The thermal expansion coefficients of kyanite at ambient pressure have been investigated by an X-ray powder diffraction technique with temperatures up to 1000 ℃. No phase transition was observed in the experimental temperature range. Data for the unit-cell parameters and temperatures were fitted empirically resulting in the following thermal expansion coefficients: αa = 5.8(3) × 10^-5, αb = 5.8 (1)× 10^-5, αc = 5.2(1)× 10^-5, and αv = 7.4(1) × 10^-3 ℃ 1 in good agreement with a recent neutron powder diffraction study. On the other hand, the variation of the unit-cell angles α, β and γ of kyanite with increase in temperature is very complicated, and the agreement among all studies is poor. The thermal expansion data at ambient pressure reported here and the compression data at ambient temperature from the literature suggest that, for the kyanite lattice, the most and least thermally expandable directions correspond to the most and least compressible directions, respectively.展开更多
基金This project was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,Chinathe Jiangsu Province Graduate Cultivation Innovative Project(Grant No.KYLX16_0347)+4 种基金Natural Science Foundation for Excellent Young Scientists of Jiangsu Province,China(Grant No.BK20180068)China Postdoctoral Science Foundation funded project,China(Grant No.2018M630555)the Fundamental Research Funds for the Central Universities,China(Grant No.NS2018039)the China Scholarship CouncilChina(Grant No.201706830071,awarded to Xiao-hu Chen for 1 year of study at the Department of Mechanical and Aerospace Engineering,Carleton University).The raw/processed data required to reproduce these findings cannot be shared at this time due to contractual issues.
文摘In order to study the influence of crystal structure change due to implantation dose on the hardness and wear performance of 300M high-strength steel,samples were surface modified by Cr implantation with dosages of 5.0 × 10^16,1.5 × 10^17 and 3.0 × 10^17 ions/cm^2.X-ray diffraction method,which was already applied in studies on the microstructure of deformed and heat-treated materials,was used to study the crystal structure of the implanted steel,and the results were corrected with the hardness and wear performance.The solid solution strengthening effect and microstructure vary with increase in implantation dose.Owing to strong solid solution hardening of Cr,small average crystallite size and high dislocation density,the hardness and wear resistance of implanted steel with dose of 5.0 × 10^16 ions/cm^2 were found to be the highest compared with other samples.Moreover,although the crystal lite size of the implanted sample with dose of 3 × 10^17 ions/cm^2 was similar to that of substrate and the dislocation density was lower than that of the substrate,its higher hardness and lower specific wear rate were due to the solid solution hardening and perhaps Cr clusters reinforcement.
文摘By means of the intensity theory of X-ray scattering and the two-phase concept of high polymer, the basic formula of the crystaUinity in block copolymers has been proposed after the corrections of atomic, temperature, absorption, Lorentz and polarization factor. Application of this method to different type poly (oxyethylene-styrene)block copolymers and the same type block copolymers with different EO contents indicates that the crystallinity in poly (oxyethylene-styrene ) block copolymers increases with the increase of the EO content and decreases in the order: PEO-PS-PEO>PEO-PS>PS-PEO-PS.
文摘When measuring residual stress of coarse-grain aluminum alloy using X-ray diffraction method, the diffraction profile shows two peaks and position of measured 20 will be changed, which lead to an inaccurate measurement result. Hence, in this paper, some methods were employed to improve the measurement accuracy. During the measuring process, different parameters (diameter of irradiated area, Ψ-oscillation range and exposure time) were selected and profile peak shift method was utilized. Moreover, when the 20 of profiles was determined, different calculation methods were used to calculate the residual stress. The results show that diameter of irradiated area and Ψ-oscillation range have significant influence on the measuring result. For stress value calculated directly from the test equipment, cross correlation method is more accurate than the absolute peak. Furthermore, another two calculation methods of slope with 2θ- sin^2Ψ and ε- sin^2Ψwere used to calculate the stress based on parameters (2θ, ε) obtained from cross correlation method. It is concluded that 2θ - sin^2Ψ method can further improve the measurement accuracy.
文摘Kanglemeisu A (C50H63O19N·CH3OH) is the product of an actinomyces species from a soil sample gathered in China. Kanglemeisu A belongs to the triclinic system, space group P1,unit cell:a=12.760(3), b=10.287(2), c=9.926(2) , α=88.39(2),β=78.64(2), γ=89.14(2). RANTAN direct method is used to solve the structure.The final discrepancy factor is R=0.0689, after atom coordinates and temperature factors have been refined with full matrix least squares.The structure skeleton consists of four parts, the naphthalene nucleus connected to the 5-membered ring, a 17-membered ring connected to C2, a dimethyl butane diacid extended out from C20, β-D-3,4-OO’ methylenedigitoxose passing through an oxygen bridge O6 and linked to C27 of ansa ring.
基金supported by the National Natural Science Foundation of China (21263015,21567016 and 21503106)the Education Department Foundation of Jiangxi Province (KJLD14005 and GJJ150016)the Natural Science Foundation of Jiangxi Province (20142BAB213013 and 20151BBE50006),which are greatly acknowledged by the authors~~
文摘A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, Zr4+, Ti4+and Pb4+cations are incorporated into the lattice of tetragonal rutile SnO2 to form a solid solution structure. As a consequence, the surface area and thermal stability of the catalysts are improved. Moreover, the oxygen species of the modified catalysts become easier to be reduced. Therefore, the oxidation activity over the catalysts was improved, except for the one modified by Pb oxide. Manganese oxide demonstrates the best promotional effects for SnO2. Using an X‐ray diffraction extrapolation method, the lattice capacity of SnO2 for Mn2O3 was 0.135 g Mn2O3/g SnO2, which indicates that to form stable solid solution, only 21%Sn4+cations in the lattice can be maximally replaced by Mn3+. If the amount of Mn3+cations is over the capacity, Mn2O3 will be formed, which is not favorable for the activity of the catalysts. The Sn rich samples with only Sn‐Mn solid solution phase show higher activity than the ones with excess Mn2O3 species.
基金supported by the State Grid Corporation Science and Technology Project(No.5419-202158503A-0-5-ZN)。
文摘The detrimental phase transformations of sodium layered transition metal oxides(Na_(x)TMO_(2))during desodiation/sodiation seriously suppress their practical applications for sodium ion batteries(SIBs).Undoubtedly,comprehensively investigating of the dynamic crystal structure evolutions of Na_(x)TMO_(2)associating with Na ions extraction/intercalation and then deeply understanding of the relationships between electrochemical performances and phase structures drawing support from advanced characterization techniques are indispensable.In-situ high-energy X-ray diffraction(HEXRD),a powerful technology to distinguish the crystal structure of electrode materials,has been widely used to identify the phase evolutions of Na_(x)TMO_(2)and then profoundly revealed the electrochemical reaction processes.In this review,we begin with the descriptions of synchrotron characterization techniques and then present the advantages of synchrotron X-ray diffraction(XRD)over conventional XRD in detail.The optimizations of structural stability and electrochemical properties for P2-,O3-,and P2/O3-type Na_(x)TMO_(2)cathodes through single/dual-site substitution,high-entropy design,phase composition regulation,and surface engineering are summarized.The dynamic crystal structure evolutions of Na_(x)TMO_(2)polytypes during Na ion extraction/intercalation as well as corresponding structural enhancement mechanisms characterizing by means of HEXRD are concluded.The interior relationships between structure/component of Na_(x)TMO_(2)polytypes and their electrochemical properties are discussed.Finally,we look forward the research directions and issues in the route to improve the electrochemical properties of Na_(x)TMO_(2)cathodes for SIBs in the future and the combined utilizations of multiple characterization techniques.This review will provide significant guidelines for rational designs of high-performance Na_(x)TMO_(2)cathodes.
基金supported by the Australian Research Council Linkage Project(No.LP200200717)co sponsored by Newmont Corporation(United States)and Vega Industries(India)+1 种基金the Powder Diffraction Beamline at the Australia’s Nuclear Science and Technology Organisation(No.PDR19870),Australiathe Centre for Microscopy and Microanalysis at the University of Queensland(No.1366),Australia。
文摘Pyrrhotite naturally occurs in various superstructures including magnetic(4C)and non-magnetic(5C,6C)types,each with distinct physicochemical properties and flotation behaviors.Challenges in accurately identifying and quantifying these superstructures hinder the optimization of pyrrhotite depression in flotation processes.To address this critical issue,synchrotron X-ray powder diffraction(S-XRPD)with Rietveld refinement was employed to quantify the distribution of superstructures in the feed and flotation concentrates of a copper–gold ore.To elucidate the mechanisms influencing depression,density functional theory(DFT)calculations were conducted to explore the electronic structures and surface reactivity of the pyrrhotite superstructures toward the adsorption of water,oxygen and hydroxyl ions(OH-)as dominant species present in the flotation process.S-XRPD analysis revealed that flotation recovery rates of pyrrhotite followed the order of 4C<6C<5C.DFT calculations indicated that the Fe 3d and S 3p orbital band centers exhibited a similar trend relative to the Fermi level with 4C being the closest.The Fe3d band center suggested that the 4C structure possessed a more reactive surface toward the oxygen reduction reaction,promoting the formation of hydrophilic Fe-OH sites.The S 3p band center order also implied that xanthate on the non-magnetic 5C and 6C surfaces could oxidize to dixanthogen,increasing hydrophobicity and floatability,while 4C formed less hydrophobic metal-xanthate complexes.Adsorption energy and charge transfer analyses of water,hydroxyl ions and molecular oxygen further supported the high reactivity and hydrophilic nature of 4C pyrrhotite.The strong bonding with hydroxyl ions indicated enhanced surface passivation by hydrophilic Fe–OOH complexes,aligning with the experimentally observed flotation order(4C<6C<5C).These findings provide a compelling correlation between experimental flotation results and electronic structure calculations,delivering crucial insights for optimizing flotation processes and improving pyrrhotite depression.This breakthrough opens up new opportunities to enhance the efficiency of flotation processes in the mining industry.
基金This work was supported by the National Natural Science Foundation of China.
文摘A uranyl compound, K_4UO_2(CO_3)_3 has been characterized by powder X-ray diffraction method. M. W.=606.46, monoclinic, C2/c (No. 15), a=1.0240(7), b=0.9198(4), c=1.2222(12)nm, β=95.12(4)°,V=1.1466(5)nm^3, Z=4, D_m=3.468g/cm^3, D_c=3.513g/cm~, λ(Cu Kα_1)=O.1540598nm, T=298K. The structure was solved by heavy atom method and Fourier synthesis, and refined by full- matrix least-squares method to R=0.1185 for 275 reflections. The uranium (Ⅵ) atom is in an eight-coordinate distorted hexagonal-bipyramidal environment with creasy fan shape. The linear uranyl group approaches to perpendicular to the equatorial plane in which three carbonate groups are chelated. U(Ⅵ) has two linear oxygen atoms closer to it (U-O=0.1767 (5) nm) than six other neighbours (U-O ranging from 0.2516 to 0.2568nm). The distances between carbon atoms and uncoordinated oxygen atoms are 0.122 (1) and 0.123(1) nm, which are distinctly different from those between carbon and coordinated oxygen atoms (mean 0.134(6) nm). This fact reveals the non-eq- uivalence of one oxygen atom to the other two in each carbonate. In K_4UO_2(CO_3)_3, the O-O dis- tance for the adjacent carbonate groups is 0.2794(4)nm approaching to the sum of Van der Waals radii of two oxygen atoms. The K-O distances vary between 0.2667 and 0.3131nm, and each anion is immediately surrounded by six potassium ions, only four of which can be considered to belong to the same structural formula unit, and they are symmetrically located above and below the equatorial plane.
文摘A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample by using all diffraction peak data in the mixture sample X-ray diffraction spectrum and combining the relative intensity distribution data of each phase standard peak in JCPDS card to carry on the least square method regression analysis. It is benefit to improve the precision of quantitative phase analysis that the given single line ratio which is usually adopted is taken the place of the multi-peak match intensity ratio and is used in X-ray diffraction quantitative phase analysis of the mixture sample. By analyzing four-group mixture sample, adopting multi-peak match intensity ratio and X-ray diffraction quantitative phase analysis principle of combining the adiabatic and matrix flushing method, it is tested that the experimental results are identical with theory.
基金Funded by the Academician Workstation of Yichang Huilong Science and Technology Co.,Ltd.Association of Science and Technology of Hubei Province(No.2013]104-22)
文摘The influence of replacement level of calcined coal-series kaolin(CCK) on hydration of ordinary Portland cement(OPC) was studied by X-ray diffraction(XRD)/Rietveld method. X-ray diffraction/Rietveld method was used to quantify the crystalline phase composition of the hydrated samples. Additionally, the morphology of hydrated samples was observed by scanning electron microscopy(SEM). The results showed that, calcium hydroxide(CH), ettringite(AFt) and amorphous phase content in hydrated samples decreased as the replacement level of CCK increased, while AFm and str?tlingite increased, which was caused by the combination of dilute, physical and pozzolanic effects. The hydration of anhydrous cement phases was accelerated by physical effect but hindered by the retardation effect of CCK. The role of each effects was discussed in detail to analyze the mechanism of OPC hydration with CCK addition. The SEM images showed that the shortening of AFt at 1 day and the denser texture at 28 days was observed with CCK addition, which was caused by the physical and pozzolanic effects, respectively.
基金partially supported by the National Key Research and Development Program of China (2016YFB0100203)the National Natural Science Foundation of China (21673116,21633003)+1 种基金the Natural Science Foundation of Jiangsu Province of China (BK20160068)PAPD of Jiangsu Higher Education Institutions
文摘LiNi0.9Co0.15Al0.05O2 (NCA) material is successfully synthesized with a modified co-precipitation method,in which NH3,H2O and EDTA are used as two chelating agents. The obtained LiNi0.9Co0.15Al0.05O2 materialhas well-defined layered structure and uniform element distribution, which reveals an enhanced electro-chemical performance with a capacity retention of 97.9% after 100 cycles at 0.2 C, and reduced thermalrunaway from the isothermal calorimetry test. In situ X-ray diffraction (XRD) was employed to capturethe structural changes during the charge-discharge process. The reversible evolutions of lattice parame-ters (a, b, c, and V) further verify the structural stability.
文摘Fitting of full X-ray diffraction patterns is an effective method for quantifying abundances during X-ray diffraction (XRD) analyses. The method is based on the principal that the observed diffraction pattern is the sum of the individual phases that compose the sample. By adding an internal standard (usually corundum) to both the observed patterns and to those for individual pure phases (standards), all patterns can all be normalized to an equivalent intensity based on the internal standard intensity. Using least-squares refinement, the individual phase proportions are varied until an optimal match is reached. As the fitting of full patterns uses the entire pattern, including background, disordered and amorphous phases are explicitly considered as individual phases, with their individual intensity profiles or “amorphous humps” included in the refinement. The method can be applied not only to samples that contain well-ordered materials, but it is particularly well suited for samples containing amorphous and/or disordered materials. In cases with extremely disordered materials where no crystal structure is available for Rietveld refinement or there is no unique intensity area that can be measured for a traditional RIR analysis, full-pattern fitting may be the best or only way to readily obtain quantitative results. This approach is also applicable in cases where there are several coexisting highly disordered phases. As all phases are considered as discrete individual components, abundances are not constrained to sum to 100%.
文摘A new method for quantitative X-ray diffraction phase analysis of a powder misture has been developed according to Popovic's doping method. The weight fraction of amorphous material in the analysed sample is obtained. For a multicomponent system in which (n-2) pure phases are added into an n-phase compnent sample and theweight fractions of all n phases can be determined by the method. The test results of confirmation agree well with the theory.
基金Supported by the National Natural Science Foundation of China (40972106) the Major Projects of the National Science and Technology of China (2011ZX05042-001-002) the Central Universities Fundamental Research Special Foundation of China (292011266)
文摘Based on analysis on X-ray diffraction, the metamorphic grade of coal in southeast Qinshui Basin was discussed, and a precise evaluation of coal rank through XRD analysis was made, in addition, the correlation of coal rank and vitrinite reflectance (Ro) was compared. XRD spectra of coal shows (002)-band and γ-band, and based on fitting calculation and multi-peak separation methods, the values of 2θ002 and 2θγ can be obtained, as well as corresponding intensities I002 and Iγ, consequently the coal rank can be quantized as the ratio of I002 and Iγ, that is coal rank=I002/Iγ. The research shows that the values of θ002 and θγ increase with the metamorphic grade, and a very good linear positive correlation exists between calculated Coal Rank and Ro.
文摘Asbestos is widely applied in such sectors as manufacturing automobiles, tractors, chemical industrial equipment, and electric equipment. Asbestos fiber is harmful to human health. Therefore, the technology of testing for asbestos in products is especially important. At present, in our country’s national specifications, there is no determination method or specification that is applicable to the asbestos in electronic and electric products. In this article, the components of asbestos in electronic and electric products are identified using the method of combining polarizing microscope with X-ray diffractometer. This method is simple, fast, highly reliable, and suitable to be widely adopted.
文摘Some meaningful advances have been made these last years to value precise and reliable way the residual stresses experimentally created by the autofrettage. The autofrettage process is used widely to introduce residual stresses into thick walled tubes;traditionally residual stresses have been measured using the Sachs method destructive or non-destructive methods. In this paper we describe the application of the X-rays diffraction;this technique permits to justify the presence of the compressive tangential residual stresses, and to value their distribution after two different autofrettage internal pressures loading. The results show that there is a large difference in the residual stresses find in the different autofrettege pressure. One can see the influence of the autofrettage’s pressure quantity on residual stresses created in the thickness of the test tubes.
文摘The Energy Dispersive X-ray Diffraction, generally referred as EDXD, has shown to be a valid alternative to the conventional Angular Dispersive X-ray Diffraction, the ADXD. EDXD exhibits several advantages to its AD counterpart, mainly related to the properties of the polychromatic X-ray beam utilized for diffracting, such as higher signal intensities, a wider accessible region of the reciprocal space, a greater transparency of samples, and a parallel data collection of the q-points in the diffraction pattern acquisition. However, the main drawback of poly-chromaticity lays in the fact that the quantities that modulate the scattered intensity in a diffraction measurement depend on the energy. These quantities are the primary X-ray beam spectrum, polarization, and X-ray absorption, the last producing by far the most critical effect because it rapidly changes as a function of energy. Therefore, a detailed knowledge of the energy dependence of all these quantities is required in EDXD in order to process the data correctly and prevent systematic errors. The difficulty in handling the energy-dependent factors complicates the experimental procedure and may make the measurements unreliable. In the present paper, a hybrid method between the ED and AD X-ray Diffraction is proposed to maintain the advantages of the polychromatic nature of the radiation utilized in EDXD, while preventing the problems produced by the energy-dependent quantities.
基金Project (51005154) supported by the National Natural Science Foundation of ChinaProject (12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission, ChinaProject (201104271) supported by the China Postdoctoral Science Foundation
文摘The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.
文摘In order to accurately identify the rock, it is necessary to study the identification method of the rock. The rock identification method, the thin slice microscopic image technique, the electron probe analysis method or the X-ray powder crystal diffraction method cannot accurately determine the rock. An X-ray powder diffraction method combined with thin-film microscopic image technique and rock identification method was proposed. The X-ray powder diffraction method was combined with the thin-film microscopic image technique to identify the rock, and the microscopic image technique was used to determine the rock. The particle size, structure, shape, mineral color and structure, determine the type of rock, and then determine the mineral and mineral content of the rock by X-ray powder diffraction method, name the rock, and complete the identification of the rock. The experimental results show that the X-ray powder diffraction method or the thin-film microscopic image technique can not accurately determine the rock and combine the X-ray powder diffraction method with the thin-film microscopic image technology to identify the rock. Improve the accuracy of rock identification results.
基金financially supported by the Natural Science Foundation of China(Grant 40872033)the Fundamental Research Funds for the Central Universities(to XL)the Natural Sciences and Engineering Research Council of Canada(to MF)
文摘The thermal expansion coefficients of kyanite at ambient pressure have been investigated by an X-ray powder diffraction technique with temperatures up to 1000 ℃. No phase transition was observed in the experimental temperature range. Data for the unit-cell parameters and temperatures were fitted empirically resulting in the following thermal expansion coefficients: αa = 5.8(3) × 10^-5, αb = 5.8 (1)× 10^-5, αc = 5.2(1)× 10^-5, and αv = 7.4(1) × 10^-3 ℃ 1 in good agreement with a recent neutron powder diffraction study. On the other hand, the variation of the unit-cell angles α, β and γ of kyanite with increase in temperature is very complicated, and the agreement among all studies is poor. The thermal expansion data at ambient pressure reported here and the compression data at ambient temperature from the literature suggest that, for the kyanite lattice, the most and least thermally expandable directions correspond to the most and least compressible directions, respectively.