期刊文献+
共找到282,658篇文章
< 1 2 250 >
每页显示 20 50 100
Wu-Manber算法性能分析及其改进 被引量:13
1
作者 陈瑜 陈国龙 《计算机科学》 CSCD 北大核心 2006年第6期203-205,209,共4页
在模式匹配中,多模式匹配算法越来越受到人们的关注。本文首先介绍了一些著名的多模式匹配算法,重点介绍了Wu-Manber算法的基本概念及其实现原理,此算法在实践应用中是最有效的。然后提出了对Wu-Manber算法的改进,以解决多模式串长度很... 在模式匹配中,多模式匹配算法越来越受到人们的关注。本文首先介绍了一些著名的多模式匹配算法,重点介绍了Wu-Manber算法的基本概念及其实现原理,此算法在实践应用中是最有效的。然后提出了对Wu-Manber算法的改进,以解决多模式串长度很短时出现的性能问题。最后,实验数据表明,改进后的Wu-Manber算法,其性能远远优于传统的Wu-Manber算法。 展开更多
关键词 wu-manber算法 多模式匹配 性能分析
在线阅读 下载PDF
一种改进的Wu-Manber多模式串匹配算法 被引量:5
2
作者 马伟华 刘玉梅 +1 位作者 叶飞 杨旭东 《应用科技》 CAS 2007年第10期32-34,38,共4页
在分析Wu—Manber算法的基础上,结合QS算法思想,设计了一种改进的多模式串匹配算法:QWM(quick Wu—Manber).算法充分利用紧邻当前窗口之后的B字符块,使算法的最大移动距离由原来的(m—B+1)增大至(m+B),平均移动距离也得... 在分析Wu—Manber算法的基础上,结合QS算法思想,设计了一种改进的多模式串匹配算法:QWM(quick Wu—Manber).算法充分利用紧邻当前窗口之后的B字符块,使算法的最大移动距离由原来的(m—B+1)增大至(m+B),平均移动距离也得到很大提高.同时对QWM算法和Wu-Manber算法进行了实验对比,无论模式串数量和最小长度怎么变化,性能都有较大提升.实验表明,改进的算法在对英文文本进行扫描时有4%~13%的提高. 展开更多
关键词 多模式串匹配 字符串匹配 Wu—Manber算法
在线阅读 下载PDF
基于Wu-Manber的快速跳跃多模式匹配算法
3
作者 王艳秋 兰巨龙 《四川大学学报(工程科学版)》 CSCD 北大核心 2007年第S1期-,共6页
海量信息处理以及网络入侵检测等应用都对串匹配技术提出了新的挑战。在分析多模式匹配的Wu-Man- ber算法之后,提出一种基于WM的快速跳跃多模式匹配算法。该算法采用增大跳跃距离、减少冗余移动的方法,提高了WM算法的查找效率。试验数... 海量信息处理以及网络入侵检测等应用都对串匹配技术提出了新的挑战。在分析多模式匹配的Wu-Man- ber算法之后,提出一种基于WM的快速跳跃多模式匹配算法。该算法采用增大跳跃距离、减少冗余移动的方法,提高了WM算法的查找效率。试验数据表明该算法的查找时间比WM算法减少了5-9%。 展开更多
关键词 多模式串匹配 wu-manber算法 快速跳跃
在线阅读 下载PDF
Wu-Manber算法的改进研究
4
作者 王佳星 陈华辉 《移动通信》 2017年第10期63-69,共7页
Wu-Manber算法是一种经典的多模式字符串匹配算法,常用于解决网络入侵检测等问题。为了解决Wu-Manber算法在模式集规模增长时,prefix表中会出现过长的模式链表这一问题,通过改变原有prefix表中的链表结构以及存储信息的格式,提出两种改... Wu-Manber算法是一种经典的多模式字符串匹配算法,常用于解决网络入侵检测等问题。为了解决Wu-Manber算法在模式集规模增长时,prefix表中会出现过长的模式链表这一问题,通过改变原有prefix表中的链表结构以及存储信息的格式,提出两种改进算法,分别用于处理较小的模式集合和较大的模式集合。实验证实了改进算法可以提高字符串匹配速度,具有很高的实用价值。 展开更多
关键词 多模式匹配 wu-manber算法 哈希表 二叉树
在线阅读 下载PDF
一种改进的针对中文编码的Wu-Manber多模式匹配算法 被引量:4
5
作者 王一霈 石春 +1 位作者 戴上静 吴刚 《小型微型计算机系统》 CSCD 北大核心 2015年第4期778-781,共4页
Wu-Manber算法是多模式匹配领域性能优越的算法之一.针对Wu-Manber算法不能很好的用于中文环境,以及滑动距离受限和冗余匹配的问题,提出一种改进的针对中文编码的WM_CH多模式匹配算法.WM_CH针对中文编码修改了哈希函数,优化了建立哈希... Wu-Manber算法是多模式匹配领域性能优越的算法之一.针对Wu-Manber算法不能很好的用于中文环境,以及滑动距离受限和冗余匹配的问题,提出一种改进的针对中文编码的WM_CH多模式匹配算法.WM_CH针对中文编码修改了哈希函数,优化了建立哈希表的过程;修改并优化了算法匹配过程,在执行精确匹配时消除了冗余匹配,增大了单次精确匹配后的滑动距离.实际测试表明,该算法性能优异,保持与原算法匹配精确度一致,针对中文编码能快速过滤非中文字符.在特征串集规模大于50 000时,匹配速度比原算法提升40%以上,同时滑动窗口的跳转次数显著下降. 展开更多
关键词 多模式匹配算法 特征串 Wu—Manber算法 WM_CH算法
在线阅读 下载PDF
一种改进的Wu-Manber多关键字匹配算法 被引量:4
6
作者 莫德敏 刘耀军 《中文信息学报》 CSCD 北大核心 2009年第1期30-34,共5页
针对Wu-Manber算法在处理公共子后缀模式情况下的不足,该文提出了一种基于非空公共子后缀模式的处理算法。该算法把有非空公共子后缀的模式汇集在一起,进一步减小了next链表的平均长度。在匹配过程中减少了字符比较的次数,从而提高算法... 针对Wu-Manber算法在处理公共子后缀模式情况下的不足,该文提出了一种基于非空公共子后缀模式的处理算法。该算法把有非空公共子后缀的模式汇集在一起,进一步减小了next链表的平均长度。在匹配过程中减少了字符比较的次数,从而提高算法的运行效率。该文对搜狗实验室给出的相关文档进行全文检索实验,并和原Wu-Manber算法、孙晓山等提出的改进算法进行比较。实验结果表明,该文提出的改进算法有效地减少了匹配过程中字符比较的次数,从而提高匹配的速度和效率。 展开更多
关键词 计算机应用 中文信息处理 Wu—Manber算法 多关键字匹配 模式匹配 字符串匹配
在线阅读 下载PDF
Wu-Manber算法在大规模模式串下的改进 被引量:2
7
作者 莫德敏 刘耀军 《晋中学院学报》 2008年第3期86-90,共5页
对笔者在另一篇文章《一种改进的Wu-Manber多关键字匹配算法》中提出的算法进行了改进,把原算法中next链表中结点的Same-Subsuffix域中分裂成两个子域,使得搜索过程中字符比较的次数进一步减少,从而提高算法的效率.特别是在大规模模式... 对笔者在另一篇文章《一种改进的Wu-Manber多关键字匹配算法》中提出的算法进行了改进,把原算法中next链表中结点的Same-Subsuffix域中分裂成两个子域,使得搜索过程中字符比较的次数进一步减少,从而提高算法的效率.特别是在大规模模式串的情况下新算法的效率比原算法有进一步的提高.实验结果表明,当模式串较少时,新算法效率与原算法相比有一定的损失.而随着模式串的增加,新算法具有更高的效率.因此,新的算法比原算法具有更大的适用范围. 展开更多
关键词 Wu—Manber算法 多关键字匹配 模式匹配 字符串匹配 信息检索
在线阅读 下载PDF
基于Wu-Manber算法的大规模URL模式串匹配算法 被引量:2
8
作者 贾博威 吴志刚 张树壮 《智能计算机与应用》 2017年第5期4-9,共6页
大规模高速URL匹配是许多网络安全系统中的关键技术,经典串匹配算法在大规模URL情况下有许多限制。针对URL数据的特点在经典多模式串匹配算法Wu-Manber基础上提出XWM-Tree算法和XWM-Hash算法。算法应用了模式串窗口选择,两阶段哈希和关... 大规模高速URL匹配是许多网络安全系统中的关键技术,经典串匹配算法在大规模URL情况下有许多限制。针对URL数据的特点在经典多模式串匹配算法Wu-Manber基础上提出XWM-Tree算法和XWM-Hash算法。算法应用了模式串窗口选择,两阶段哈希和关联容器组织冲突链表等多种优化手段,大幅度提高了算法的匹配性能。在大规模真实数据集上的测试结果表明本文提出的算法匹配速度可以提高一倍以上,尤其是当最短模式串较长的时候更有优势。 展开更多
关键词 多模式串匹配 URL匹配 wu-manber算法
在线阅读 下载PDF
基于CUDA的Wu-Manber多模式匹配算法 被引量:1
9
作者 马计 王国平 杨明 《计算机系统应用》 2012年第3期51-54,175,共5页
多模式匹配是计算机科学中最基本的问题,其应用在许多领域,在一些情形下也是比较耗时的。GPU拥有比CPU更强的并行计算能力,随着CUDA架构的推出,GPU用于通用计算领域的并行编程工作变得更加轻松。实现了基于CUDA架构的Wu-Manber多模式匹... 多模式匹配是计算机科学中最基本的问题,其应用在许多领域,在一些情形下也是比较耗时的。GPU拥有比CPU更强的并行计算能力,随着CUDA架构的推出,GPU用于通用计算领域的并行编程工作变得更加轻松。实现了基于CUDA架构的Wu-Manber多模式匹配算法,实验结果表明,相比传统串行算法而言,本文的实现获得了10倍以上的加速。 展开更多
关键词 多模式匹配 GPU CUDA wu-manber
在线阅读 下载PDF
Wu-Manber算法的一种综合改进
10
作者 莫德敏 刘耀军 《太原师范学院学报(自然科学版)》 2008年第2期72-75,共4页
对孙晓山等提出的Wu-Manber算法的后缀改进算法作进一步的改进,在对next链表进行分类的同时把含有互为后缀的结点提到链表的前部,并整合了张鑫提出的精神的不良字符转移和弱化的良好后缀转移的改进方法,新改进的算法充分利用以上两种算... 对孙晓山等提出的Wu-Manber算法的后缀改进算法作进一步的改进,在对next链表进行分类的同时把含有互为后缀的结点提到链表的前部,并整合了张鑫提出的精神的不良字符转移和弱化的良好后缀转移的改进方法,新改进的算法充分利用以上两种算法的优点,使区配过程中字符比较好的次数得到了进一步减少.新改进的Wu-Manber匹配算法在实验中取得了更高的效率. 展开更多
关键词 wu-manber算法 多关键字匹配 模式匹配 字符串匹配 信息检索
在线阅读 下载PDF
改进的Wu-Manber多模式串匹配算法的设计与实现 被引量:1
11
作者 姚永安 《广东通信技术》 2017年第1期24-26,50,共4页
多模式串匹配算法作为入侵检测系统中的关键算法,针对Wu-Manber多模式串匹配算法效率低的问题,提出利用算法I_Sunday模式匹配的跳跃思想,对WuManber算法进行重新设计与实现。改进后的IS_WM算法最大移动距离由原来(mB+1)增大至(2m+B)。... 多模式串匹配算法作为入侵检测系统中的关键算法,针对Wu-Manber多模式串匹配算法效率低的问题,提出利用算法I_Sunday模式匹配的跳跃思想,对WuManber算法进行重新设计与实现。改进后的IS_WM算法最大移动距离由原来(mB+1)增大至(2m+B)。为验证IS_WM算法的性能,对Wu-Manber算法、QWM算法和IS_WM算法进行实验,在同等条件下,考察模式串规模及最短模式串长度对匹配窗口移动次数的影响。实验结果表明IS_WM算法能够跳过更多的坏块字符,大大减少了块字符匹配次数,从而缩短模式串匹配时间。 展开更多
关键词 wu-manber 算法 I_Sunday算法 IS_WM算法 入侵检测系统
在线阅读 下载PDF
一种改进的Wu-Manber多模式串匹配算法
12
作者 刘征宇 刘学生 《自动化应用》 2015年第5期5-8,共4页
针对Wu-Manber算法在模式串后缀与文本后缀相匹配的情况下,至少需要进行一次查找PREFIX表的比较操作的特点,提出一种改进的Wu-Manber算法,将PREFIX表信息合并到HASH表中,减少匹配过程中的查表比较次数,提高算法性能。
关键词 wu-manber算法 多模式串匹配 后缀信息 前缀信息
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
13
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
14
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
15
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
16
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
17
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
18
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
19
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
20
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部