期刊文献+
共找到20,281篇文章
< 1 2 250 >
每页显示 20 50 100
Hierarchical detection and tracking for moving targets in underwater wireless sensor networks 被引量:1
1
作者 Yudong Li Hongcheng Zhuang +2 位作者 Long Xu Shengquan Li Haibo Lu 《Digital Communications and Networks》 2025年第2期556-562,共7页
It is difficult to improve both energy consumption and detection accuracy simultaneously,and even to obtain the trade-off between them,when detecting and tracking moving targets,especially for Underwater Wireless Sens... It is difficult to improve both energy consumption and detection accuracy simultaneously,and even to obtain the trade-off between them,when detecting and tracking moving targets,especially for Underwater Wireless Sensor Networks(UWSNs).To this end,this paper investigates the relationship between the Degree of Target Change(DoTC)and the detection period,as well as the impact of individual nodes.A Hierarchical Detection and Tracking Approach(HDTA)is proposed.Firstly,the network detection period is determined according to DoTC,which reflects the variation of target motion.Secondly,during the network detection period,each detection node calculates its own node detection period based on the detection mutual information.Taking DoTC as pheromone,an ant colony algorithm is proposed to adaptively adjust the network detection period.The simulation results show that the proposed HDTA with the optimizations of network level and node level significantly improves the detection accuracy by 25%and the network energy consumption by 10%simultaneously,compared to the traditional adaptive period detection schemes. 展开更多
关键词 Underwater wireless sensor networks The degree of target change Mutual information PHEROMONE Adaptive period
在线阅读 下载PDF
Wireless Sensor Network Modeling and Analysis for Attack Detection
2
作者 Tamara Zhukabayeva Vasily Desnitsky Assel Abdildayeva 《Computer Modeling in Engineering & Sciences》 2025年第8期2591-2625,共35页
Wireless Sensor Networks(WSN)have gained significant attention over recent years due to their extensive applications in various domains such as environmentalmonitoring,healthcare systems,industrial automation,and smar... Wireless Sensor Networks(WSN)have gained significant attention over recent years due to their extensive applications in various domains such as environmentalmonitoring,healthcare systems,industrial automation,and smart cities.However,such networks are inherently vulnerable to different types of attacks because they operate in open environments with limited resources and constrained communication capabilities.Thepaper addresses challenges related to modeling and analysis of wireless sensor networks and their susceptibility to attacks.Its objective is to create versatile modeling tools capable of detecting attacks against network devices and identifying anomalies caused either by legitimate user errors or malicious activities.A proposed integrated approach for data collection,preprocessing,and analysis in WSN outlines a series of steps applicable throughout both the design phase and operation stage.This ensures effective detection of attacks and anomalies within WSNs.An introduced attackmodel specifies potential types of unauthorized network layer attacks targeting network nodes,transmitted data,and services offered by the WSN.Furthermore,a graph-based analytical framework was designed to detect attacks by evaluating real-time events from network nodes and determining if an attack is underway.Additionally,a simulation model based on sequences of imperative rules defining behaviors of both regular and compromised nodes is presented.Overall,this technique was experimentally verified using a segment of a WSN embedded in a smart city infrastructure,simulating a wormhole attack.Results demonstrate the viability and practical significance of the technique for enhancing future information security measures.Validation tests confirmed high levels of accuracy and efficiency when applied specifically to detecting wormhole attacks targeting routing protocols in WSNs.Precision and recall rates averaged above the benchmark value of 0.95,thus validating the broad applicability of the proposed models across varied scenarios. 展开更多
关键词 wireless sensor network MODELING SECURITY ATTACK DETECTION MONITORING
在线阅读 下载PDF
Mitigating Hotspot Problem Using Northern Goshawk Optimization Based Energy Aware Multi-Hop Communication for Wireless Sensor Networks
3
作者 S.Leones Sherwin Vimalraj J.Lydia 《China Communications》 2025年第2期283-298,共16页
Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commo... Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commonly used in various applications such as environmental monitoring,surveillance,healthcare,agriculture,and industrial automation.Despite the benefits of WSN,energy efficiency remains a challenging problem that needs to be addressed.Clustering and routing can be considered effective solutions to accomplish energy efficiency in WSNs.Recent studies have reported that metaheuristic algorithms can be applied to optimize cluster formation and routing decisions.This study introduces a new Northern Goshawk Optimization with boosted coati optimization algorithm for cluster-based routing(NGOBCO-CBR)method for WSN.The proposed NGOBCO-CBR method resolves the hot spot problem,uneven load balancing,and energy consumption in WSN.The NGOBCO-CBR technique comprises two major processes such as NGO based clustering and BCO-based routing.In the initial phase,the NGObased clustering method is designed for cluster head(CH)selection and cluster construction using five input variables such as residual energy(RE),node proximity,load balancing,network average energy,and distance to BS(DBS).Besides,the NGOBCO-CBR technique applies the BCO algorithm for the optimum selection of routes to BS.The experimental results of the NGOBCOCBR technique are studied under different scenarios,and the obtained results showcased the improved efficiency of the NGOBCO-CBR technique over recent approaches in terms of different measures. 展开更多
关键词 CLUSTERING energy efficiency metaheuristics multihop communication network lifetime wireless sensor networks
在线阅读 下载PDF
Application of Bagging Ensemble Model for Fault Detection in Wireless Sensor Networks
4
作者 Rahul Prasad Baghel R K 《Journal of Harbin Institute of Technology(New Series)》 2025年第5期74-85,共12页
A Wireless Sensor Network(WSN)comprises a series of spatially distributed autonomous devices,each equipped with sophisticated sensors.These sensors play a crucial role in monitoring diverse environmental conditions su... A Wireless Sensor Network(WSN)comprises a series of spatially distributed autonomous devices,each equipped with sophisticated sensors.These sensors play a crucial role in monitoring diverse environmental conditions such as light intensity,air pressure,temperature,humidity,wind,etc.These sensors are generally deployed in harsh and hostile conditions;hence they suffer from different kinds of faults.However,identifying faults in WSN data remains a complex task,as existing fault detection methods,including centralized,distributed,and hybrid approaches,rely on the spatio⁃temporal correlation among sensor nodes.Moreover,existing techniques predominantly leverage classification⁃based machine learning methods to discern the fault state within WSN.In this paper,we propose a regression⁃based bagging method to detect the faults in the network.The proposed bagging method is consisted of GRU(Gated Recurrent Unit)and Prophet model.Bagging allows weak learners to combine efforts to outperform a strong learner,hence it is appropriate to use in WSN.The proposed bagging method was first trained at the base station,then they were deployed at each SN(Sensor Node).Most of the common faults in WSN,such as transient,intermittent and permanent faults,were considered.The validity of the proposed scheme was tested using a trusted online published dataset.Using experimental studies,compared to the latest state⁃of⁃the⁃art machine learning models,the effectiveness of the proposed model is shown for fault detection.Performance evaluation in terms of false positive rate,accuracy,and false alarm rate shows the efficiency of the proposed algorithm. 展开更多
关键词 fault detection GRU PROPHET deep learning wireless sensor networks
在线阅读 下载PDF
Data Gathering Based on Hybrid Energy Efficient Clustering Algorithm and DCRNN Model in Wireless Sensor Network
5
作者 Li Cuiran Liu Shuqi +1 位作者 Xie Jianli Liu Li 《China Communications》 2025年第3期115-131,共17页
In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clu... In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clustering routing base on firefly and pigeon-inspired algorithm(FF-PIA)is proposed to optimise the data transmission path.After having obtained the optimal number of cluster head node(CH),its result might be taken as the basis of producing the initial population of FF-PIA algorithm.The L′evy flight mechanism and adaptive inertia weighting are employed in the algorithm iteration to balance the contradiction between the global search and the local search.Moreover,a Gaussian perturbation strategy is applied to update the optimal solution,ensuring the algorithm can jump out of the local optimal solution.And,in the WSN data gathering,a onedimensional signal reconstruction algorithm model is developed by dilated convolution and residual neural networks(DCRNN).We conducted experiments on the National Oceanic and Atmospheric Administration(NOAA)dataset.It shows that the DCRNN modeldriven data reconstruction algorithm improves the reconstruction accuracy as well as the reconstruction time performance.FF-PIA and DCRNN clustering routing co-simulation reveals that the proposed algorithm can effectively improve the performance in extending the network lifetime and reducing data transmission delay. 展开更多
关键词 CLUSTERING data gathering DCRNN model network lifetime wireless sensor network
在线阅读 下载PDF
Optimizing wireless sensor network topology with node load consideration
6
作者 Ruizhi CHEN 《虚拟现实与智能硬件(中英文)》 2025年第1期47-61,共15页
Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing attention.However,traditional optimization methods often overlook the energy imbalance caus... Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing attention.However,traditional optimization methods often overlook the energy imbalance caused by node loads,which affects network performance.Methods To improve the overall performance and efficiency of wireless sensor networks,a new method for optimizing the wireless sensor network topology based on K-means clustering and firefly algorithms is proposed.The K-means clustering algorithm partitions nodes by minimizing the within-cluster variance,while the firefly algorithm is an optimization algorithm based on swarm intelligence that simulates the flashing interaction between fireflies to guide the search process.The proposed method first introduces the K-means clustering algorithm to cluster nodes and then introduces a firefly algorithm to dynamically adjust the nodes.Results The results showed that the average clustering accuracies in the Wine and Iris data sets were 86.59%and 94.55%,respectively,demonstrating good clustering performance.When calculating the node mortality rate and network load balancing standard deviation,the proposed algorithm showed dead nodes at approximately 50 iterations,with an average load balancing standard deviation of 1.7×10^(4),proving its contribution to extending the network lifespan.Conclusions This demonstrates the superiority of the proposed algorithm in significantly improving the energy efficiency and load balancing of wireless sensor networks to extend the network lifespan.The research results indicate that wireless sensor networks have theoretical and practical significance in fields such as monitoring,healthcare,and agriculture. 展开更多
关键词 Node load wireless sensor network K-means clustering Firefly algorithm Topology optimization
在线阅读 下载PDF
Sine-Polynomial Chaotic Map(SPCM):A Decent Cryptographic Solution for Image Encryption in Wireless Sensor Networks
7
作者 David S.Bhatti Annas W.Malik +1 位作者 Haeung Choi Ki-Il Kim 《Computers, Materials & Continua》 2025年第10期2157-2177,共21页
Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a n... Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions,leveraging a piecewise function to achieve a broad chaotic range()and a high Lyapunov exponent(5.04).Validated through nine benchmarks,including standard randomness tests,Diehard tests,and Shannon entropy(3.883),SPCM demonstrates superior randomness and high sensitivity to initial conditions.Applied to image encryption,SPCM achieves 0.152582 s(39%faster than some techniques)and 433.42 KB/s throughput(134%higher than some techniques),setting new benchmarks for chaotic map-based methods in WSNs.Chaos-based permutation and exclusive or(XOR)diffusion yield near-zero correlation in encrypted images,ensuring strong resistance to Statistical Attacks(SA)and accurate recovery.SPCM also exhibits a strong avalanche effect(bit difference),making it an efficient,secure solution for WSNs in domains like healthcare and smart cities. 展开更多
关键词 Chaos theory chaotic system image encryption CRYPTOGRAPHY wireless sensor networks(WSNs)
在线阅读 下载PDF
Deep Q-Learning Driven Protocol for Enhanced Border Surveillance with Extended Wireless Sensor Network Lifespan
8
作者 Nimisha Rajput Amit Kumar +3 位作者 Raghavendra Pal Nishu Gupta Mikko Uitto Jukka Mäkelä 《Computer Modeling in Engineering & Sciences》 2025年第6期3839-3859,共21页
Wireless Sensor Networks(WSNs)play a critical role in automated border surveillance systems,where continuous monitoring is essential.However,limited energy resources in sensor nodes lead to frequent network failures a... Wireless Sensor Networks(WSNs)play a critical role in automated border surveillance systems,where continuous monitoring is essential.However,limited energy resources in sensor nodes lead to frequent network failures and reduced coverage over time.To address this issue,this paper presents an innovative energy-efficient protocol based on deep Q-learning(DQN),specifically developed to prolong the operational lifespan of WSNs used in border surveillance.By harnessing the adaptive power of DQN,the proposed protocol dynamically adjusts node activity and communication patterns.This approach ensures optimal energy usage while maintaining high coverage,connectivity,and data accuracy.The proposed system is modeled with 100 sensor nodes deployed over a 1000 m×1000 m area,featuring a strategically positioned sink node.Our method outperforms traditional approaches,achieving significant enhancements in network lifetime and energy utilization.Through extensive simulations,it is observed that the network lifetime increases by 9.75%,throughput increases by 8.85%and average delay decreases by 9.45%in comparison to the similar recent protocols.It demonstrates the robustness and efficiency of our protocol in real-world scenarios,highlighting its potential to revolutionize border surveillance operations. 展开更多
关键词 wireless sensor networks(WSNs) energy efficiency reinforcement learning network lifetime dynamic node management autonomous surveillance
在线阅读 下载PDF
An Efficient Clustering Algorithm for Enhancing the Lifetime and Energy Efficiency of Wireless Sensor Networks
9
作者 Peng Zhou Wei Chen Bingyu Cao 《Computers, Materials & Continua》 2025年第9期5337-5360,共24页
Wireless Sensor Networks(WSNs),as a crucial component of the Internet of Things(IoT),are widely used in environmental monitoring,industrial control,and security surveillance.However,WSNs still face challenges such as ... Wireless Sensor Networks(WSNs),as a crucial component of the Internet of Things(IoT),are widely used in environmental monitoring,industrial control,and security surveillance.However,WSNs still face challenges such as inaccurate node clustering,low energy efficiency,and shortened network lifespan in practical deployments,which significantly limit their large-scale application.To address these issues,this paper proposes an Adaptive Chaotic Ant Colony Optimization algorithm(AC-ACO),aiming to optimize the energy utilization and system lifespan of WSNs.AC-ACO combines the path-planning capability of Ant Colony Optimization(ACO)with the dynamic characteristics of chaotic mapping and introduces an adaptive mechanism to enhance the algorithm’s flexibility and adaptability.By dynamically adjusting the pheromone evaporation factor and heuristic weights,efficient node clustering is achieved.Additionally,a chaotic mapping initialization strategy is employed to enhance population diversity and avoid premature convergence.To validate the algorithm’s performance,this paper compares AC-ACO with clustering methods such as Low-Energy Adaptive Clustering Hierarchy(LEACH),ACO,Particle Swarm Optimization(PSO),and Genetic Algorithm(GA).Simulation results demonstrate that AC-ACO outperforms the compared algorithms in key metrics such as energy consumption optimization,network lifetime extension,and communication delay reduction,providing an efficient solution for improving energy efficiency and ensuring long-term stable operation of wireless sensor networks. 展开更多
关键词 Internet of Things wireless sensor networks ant colony optimization clustering algorithm energy efficiency
在线阅读 下载PDF
Three-Level Intrusion Detection Model for Wireless Sensor Networks Based on Dynamic Trust Evaluation
10
作者 Xiaogang Yuan Huan Pei Yanlin Wu 《Computers, Materials & Continua》 2025年第9期5555-5575,共21页
In the complex environment of Wireless Sensor Networks(WSNs),various malicious attacks have emerged,among which internal attacks pose particularly severe security risks.These attacks seriously threaten network stabili... In the complex environment of Wireless Sensor Networks(WSNs),various malicious attacks have emerged,among which internal attacks pose particularly severe security risks.These attacks seriously threaten network stability,data transmission reliability,and overall performance.To effectively address this issue and significantly improve intrusion detection speed,accuracy,and resistance to malicious attacks,this research designs a Three-level Intrusion Detection Model based on Dynamic Trust Evaluation(TIDM-DTE).This study conducts a detailed analysis of how different attack types impact node trust and establishes node models for data trust,communication trust,and energy consumption trust by focusing on characteristics such as continuous packet loss and energy consumption changes.By dynamically predicting node trust values using the grey Markov model,the model accurately and sensitively reflects changes in node trust levels during attacks.Additionally,DBSCAN(Density-Based Spatial Clustering of Applications with Noise)data noise monitoring technology is employed to quickly identify attacked nodes,while a trust recovery mechanism restores the trust of temporarily faulty nodes to reduce False Alarm Rate.Simulation results demonstrate that TIDM-DTE achieves high detection rates,fast detection speed,and low False Alarm Rate when identifying various network attacks,including selective forwarding attacks,Sybil attacks,switch attacks,and black hole attacks.TIDM-DTE significantly enhances network security,ensures secure and reliable data transmission,moderately improves network energy efficiency,reduces unnecessary energy consumption,and provides strong support for the stable operation of WSNs.Meanwhile,the research findings offer new ideas and methods for WSN security protection,possessing important theoretical significance and practical application value. 展开更多
关键词 wireless sensor networks intrusion detection dynamic trust evaluation data noise detection trust recovery mechanism
在线阅读 下载PDF
UAV-Assisted LoRa-Based Wireless Sensor Network for Environmental Monitoring
11
作者 Muhammad Aamir Khan Zain Anwar Ali Rana Javed Masood 《Instrumentation》 2025年第2期91-100,共10页
Unmanned Aerial Vehicles(UAVs)integrated with Wireless Sensor Networks(WSNs)present a transformative approach to environmental monitoring by enabling real-time,low power,wide-area,and high-resolution data collection.T... Unmanned Aerial Vehicles(UAVs)integrated with Wireless Sensor Networks(WSNs)present a transformative approach to environmental monitoring by enabling real-time,low power,wide-area,and high-resolution data collection.This paper proposes a UAV-based WSN framework designed for efficient ecological data acquisition,including parameters such as temperature,humidity,various gases,detection of motion of a material,and safety features.The system leverages UAVs for dynamic deployment and data retrieval from distributed sensor nodes in remote or inaccessible areas,reducing the reliance on fixed infrastructure.Long Range Communication(LoRa)technology is also integrated with a WSN to enhance network coverage and adaptability issues.The proposed system covers vast areas through LoRa communication ensuring minimal energy consumption and cost-effective sensing capabilities.Field tests and simulation findings show how well the system captures spatiotemporal environmental fluctuations,making it an invaluable tool for monitoring climate change,ecological research,and disaster response. 展开更多
关键词 wireless sensor network unmanned aerial vehicle long range communication low power consumption environmental data monitoring
原文传递
Efficient Cooperative Target Node Localization with Optimization Strategy Based on RSS for Wireless Sensor Networks
12
作者 Xinrong Zhang Bo Chang 《Computers, Materials & Continua》 2025年第3期5079-5095,共17页
In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in ... In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in each phase of the localization process and fully use the detective information in the network to improve the positioning precision and robustness.In the ranging period,the power attenuation factor is obtained through the wireless channel modeling,and the RSSI value is transformed into distance.In the positioning period,the preferred reference nodes are used to calculate coordinates.In the position optimization period,Taylor expansion and least-squared iterative update algorithms are used to further improve the location precision.In the positioning,the notion of cooperative localization is introduced,in which the located node satisfying certain demands will be upgraded to a reference node so that it can participate in the positioning of other nodes,and improve the coverage and positioning precision.The results show that on the same network conditions,the proposed algorithm in this paper is similar to the Taylor series expansion algorithm based on the actual coordinates,but much higher than the basic least square algorithm,and the positioning precision is improved rapidly with the reduce of the range error. 展开更多
关键词 wireless sensor networks received signal strength(RSS) optimization algorithm cooperative localiza-tion weighted least squares
在线阅读 下载PDF
Adaptive Time Synchronization in Time Sensitive-Wireless Sensor Networks Based on Stochastic Gradient Algorithms Framework
13
作者 Ramadan Abdul-Rashid Mohd Amiruddin Abd Rahman +1 位作者 Kar Tim Chan Arun Kumar Sangaiah 《Computer Modeling in Engineering & Sciences》 2025年第3期2585-2616,共32页
This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different... This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications. 展开更多
关键词 wireless sensor network time synchronization stochastic gradient algorithm MULTI-HOP
在线阅读 下载PDF
Enhanced Multi-Object Dwarf Mongoose Algorithm for Optimization Stochastic Data Fusion Wireless Sensor Network Deployment
14
作者 Shumin Li Qifang Luo Yongquan Zhou 《Computer Modeling in Engineering & Sciences》 2025年第2期1955-1994,共40页
Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic ... Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained. 展开更多
关键词 Stochastic data fusion wireless sensor networks network deployment spatiotemporal coverage dwarf mongoose optimization algorithm multi-objective optimization
在线阅读 下载PDF
Application Research of Wireless Sensor Networks and the Internet of Things
15
作者 Changjian Lv Rui Wang Man Zhao 《Journal of Electronic Research and Application》 2025年第4期283-289,共7页
In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),dee... In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers. 展开更多
关键词 wireless sensor networks Internet of Things Key technologies Application fields
在线阅读 下载PDF
A Fuzzy Multi-Objective Framework for Energy Optimization and Reliable Routing in Wireless Sensor Networks via Particle Swarm Optimization
16
作者 Medhat A.Tawfeek Ibrahim Alrashdi +1 位作者 Madallah Alruwaili Fatma M.Talaat 《Computers, Materials & Continua》 2025年第5期2773-2792,共20页
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectu... Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use. 展开更多
关键词 wireless sensor networks particle swarm optimization fuzzy multi-objective framework routing stability
在线阅读 下载PDF
Dynamic Clustering Method for Underwater Wireless Sensor Networks based on Deep Reinforcement Learning
17
作者 Kohyar Bolvary Zadeh Dashtestani Reza Javidan Reza Akbari 《哈尔滨工程大学学报(英文版)》 2025年第4期864-876,共13页
Underwater wireless sensor networks(UWSNs)have emerged as a new paradigm of real-time organized systems,which are utilized in a diverse array of scenarios to manage the underwater environment surrounding them.One of t... Underwater wireless sensor networks(UWSNs)have emerged as a new paradigm of real-time organized systems,which are utilized in a diverse array of scenarios to manage the underwater environment surrounding them.One of the major challenges that these systems confront is topology control via clustering,which reduces the overload of wireless communications within a network and ensures low energy consumption and good scalability.This study aimed to present a clustering technique in which the clustering process and cluster head(CH)selection are performed based on the Markov decision process and deep reinforcement learning(DRL).DRL algorithm selects the CH by maximizing the defined reward function.Subsequently,the sensed data are collected by the CHs and then sent to the autonomous underwater vehicles.In the final phase,the consumed energy by each sensor is calculated,and its residual energy is updated.Then,the autonomous underwater vehicle performs all clustering and CH selection operations.This procedure persists until the point of cessation when the sensor’s power has been reduced to such an extent that no node can become a CH.Through analysis of the findings from this investigation and their comparison with alternative frameworks,the implementation of this method can be used to control the cluster size and the number of CHs,which ultimately augments the energy usage of nodes and prolongs the lifespan of the network.Our simulation results illustrate that the suggested methodology surpasses the conventional low-energy adaptive clustering hierarchy,the distance-and energy-constrained K-means clustering scheme,and the vector-based forward protocol and is viable for deployment in an actual operational environment. 展开更多
关键词 Underwater wireless sensor network CLUSTERING Cluster head selection Deep reinforcement learning
暂未订购
A Hybrid Framework Integrating Deterministic Clustering,Neural Networks,and Energy-Aware Routing for Enhanced Efficiency and Longevity in Wireless Sensor Network
18
作者 Muhammad Salman Qamar Muhammad Fahad Munir 《Computers, Materials & Continua》 2025年第9期5463-5485,共23页
Wireless Sensor Networks(WSNs)have emerged as crucial tools for real-time environmental monitoring through distributed sensor nodes(SNs).However,the operational lifespan of WSNs is significantly constrained by the lim... Wireless Sensor Networks(WSNs)have emerged as crucial tools for real-time environmental monitoring through distributed sensor nodes(SNs).However,the operational lifespan of WSNs is significantly constrained by the limited energy resources of SNs.Current energy efficiency strategies,such as clustering,multi-hop routing,and data aggregation,face challenges,including uneven energy depletion,high computational demands,and suboptimal cluster head(CH)selection.To address these limitations,this paper proposes a hybrid methodology that optimizes energy consumption(EC)while maintaining network performance.The proposed approach integrates the Low Energy Adaptive Clustering Hierarchy with Deterministic(LEACH-D)protocol using an Artificial Neural Network(ANN)and Bayesian Regularization Algorithm(BRA).LEACH-D improves upon conventional LEACH by ensuring more uniform energy usage across SNs,mitigating inefficiencies from random CH selection.The ANN further enhances CH selection and routing processes,effectively reducing data transmission overhead and idle listening.Simulation results reveal that the LEACH-D-ANN model significantly reduces EC and extends the network’s lifespan compared to existing protocols.This framework offers a promising solution to the energy efficiency challenges in WSNs,paving the way for more sustainable and reliable network deployments. 展开更多
关键词 wireless sensor networks(WSNs) machine learning based artificial neural networks(ANNs) energy consumption(EC) LEACH-D sensor nodes(SNs) Bayesian Regularization Algorithm(BRA)
在线阅读 下载PDF
A blockchain-empowered authentication scheme for worm detection in wireless sensor network 被引量:1
19
作者 Yuling Chen Xiong Yang +2 位作者 Tao Li Yi Ren Yangyang Long 《Digital Communications and Networks》 SCIE CSCD 2024年第2期265-272,共8页
Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For... Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network. 展开更多
关键词 wireless sensor network(WSN) Node authentication Blockchain TANGLE Worm detection
在线阅读 下载PDF
Actor-Critic-Based UAV-Assisted Data Collection in the Wireless Sensor Network 被引量:1
20
作者 Huang Xiaoge Wang Lingzhi +1 位作者 He Yong Chen Qianbin 《China Communications》 SCIE CSCD 2024年第4期163-177,共15页
Wireless Sensor Network(WSN)is widely utilized in large-scale distributed unmanned detection scenarios due to its low cost and flexible installation.However,WSN data collection encounters challenges in scenarios lacki... Wireless Sensor Network(WSN)is widely utilized in large-scale distributed unmanned detection scenarios due to its low cost and flexible installation.However,WSN data collection encounters challenges in scenarios lacking communication infrastructure.Unmanned aerial vehicle(UAV)offers a novel solution for WSN data collection,leveraging their high mobility.In this paper,we present an efficient UAV-assisted data collection algorithm aimed at minimizing the overall power consumption of the WSN.Firstly,a two-layer UAV-assisted data collection model is introduced,including the ground and aerial layers.The ground layer senses the environmental data by the cluster members(CMs),and the CMs transmit the data to the cluster heads(CHs),which forward the collected data to the UAVs.The aerial network layer consists of multiple UAVs that collect,store,and forward data from the CHs to the data center for analysis.Secondly,an improved clustering algorithm based on K-Means++is proposed to optimize the number and locations of CHs.Moreover,an Actor-Critic based algorithm is introduced to optimize the UAV deployment and the association with CHs.Finally,simulation results verify the effectiveness of the proposed algorithms. 展开更多
关键词 actor critic data collection deep reinforcement learning unmanned aerial vehicle wireless sensor network
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部