The Visible and Infrared Spin-Scan Radiometer(VISSR) onboard the Fengyun-2(FY-2) satellite can provide valuable thermal infrared observations to help create a precipitable water vapor(PWV) product with high spatial an...The Visible and Infrared Spin-Scan Radiometer(VISSR) onboard the Fengyun-2(FY-2) satellite can provide valuable thermal infrared observations to help create a precipitable water vapor(PWV) product with high spatial and temporal resolutions. The current FY-2/VISSR PWV product in operation is produced by using a traditional two-band physical split-window(PSW) method, which produces low quality results under dry atmospheric conditions. Based on the sensitivity characteristics of FY-2 F/VISSR water vapor channel and two split-window channels to atmospheric water vapor, this study developed a new, robust operational PWV retrieval algorithm for FY-2 F to improve the operational precision of the current PWV product. The algorithm uses a modified three-band PSW method, which adds a scale for the water vapor channel in the improved three-band PSW method. Integrated PWV products from the radiosonde data in 2016 are used here to validate the precision of the PWV retrieved by the modified three-band and traditional two-band PSW methods. The mean bias, root mean square error(RMSE), and correlation coefficient of the PWV retrieved by the modified three-band PSW method are 0.28 mm, 4.53 mm, and 0.969, respectively. The accuracy is much better than the PWV retrieved by the two-band method, whose mean bias, RMSE, and correlation coefficient are 12.67 mm, 29.35 mm, and 0.23. Especially, in mid-or high-latitude regions, the RMSE of the PWV is improved from 10 to 2 mm by changing the inversion in the two-band method to the modified three-band PSW method. Furthermore, the modified three-band PSW results show a better consistency with the radiosonde PWV at any zonal belt and season than the two-band PSW results. This new algorithm could significantly improve the quality of the current FY-2 F/VISSR PWV product, especially at sites where the actual PWV are lower than 15 mm.展开更多
This paper introduces an Improved Bidirectional Jump Point Search(I-BJPS)algorithm to address the challenges of the traditional Jump Point Search(JPS)in mobile robot path planning.These challenges include excessive no...This paper introduces an Improved Bidirectional Jump Point Search(I-BJPS)algorithm to address the challenges of the traditional Jump Point Search(JPS)in mobile robot path planning.These challenges include excessive node expansions,frequent path inflexion points,slower search times,and a high number of jump points in complex environments with large areas and dense obstacles.Firstly,we improve the heuristic functions in both forward and reverse directions to minimize expansion nodes and search time.We also introduce a node optimization strategy to reduce non-essential nodes so that the path length is optimized.Secondly,we employ a second-order Bezier Curve to smooth turning points,making generated paths more suitable for mobile robot motion requirements.Then,we integrate the Dynamic Window Approach(DWA)to improve path planning safety.Finally,the simulation results demonstrate that the I-BJPS algorithm significantly outperforms both the original unidirectional JPS algorithm and the bidirectional JPS algorithm in terms of search time,the number of path inflexion points,and overall path length,the advantages of the I-BJPS algorithm are particularly pronounced in complex environments.Experimental results from real-world scenarios indicate that the proposed algorithm can efficiently and rapidly generate an optimal path that is safe,collision-free,and well-suited to the robot’s locomotion requirements.展开更多
[Objective] This study aimed to establish a new method for preparing paraffin sections of cattle eyebal s. [Method] The conventional method was used to prepare paraffin sections for cattle eyebal s in the control and ...[Objective] This study aimed to establish a new method for preparing paraffin sections of cattle eyebal s. [Method] The conventional method was used to prepare paraffin sections for cattle eyebal s in the control and a new method termed"opening a window on cornea and refixation" was used to prepare paraffin sections for cattle eyebal s in the treatment group. [Result] After the prepared specimens in the treatment group were fixed, it could be macroscopical y observed that retina and choroid were closely connected, with detachment occurring at a smal portion be-tween the two. According to the paraffin sections, it was microscopical y observed that the continuity of trabecular meshwork was intact, as wel as the continuity be-tween different layers of eyebal wal , without detachment between them, no retinal detachment, no shrinkage of each layer of tissue cells. [Conclusion] This study pro-vides a foundation for the basic research and pathological study of eyebal s.展开更多
基金Supported by the National Key Research and Development Program of China(2016YFA0600101 and 2018YFA0605502)China Meteorological Administration Special Public Welfare Research Fund(GYHY201406001)National Natural Science Foundation of China(41571348)
文摘The Visible and Infrared Spin-Scan Radiometer(VISSR) onboard the Fengyun-2(FY-2) satellite can provide valuable thermal infrared observations to help create a precipitable water vapor(PWV) product with high spatial and temporal resolutions. The current FY-2/VISSR PWV product in operation is produced by using a traditional two-band physical split-window(PSW) method, which produces low quality results under dry atmospheric conditions. Based on the sensitivity characteristics of FY-2 F/VISSR water vapor channel and two split-window channels to atmospheric water vapor, this study developed a new, robust operational PWV retrieval algorithm for FY-2 F to improve the operational precision of the current PWV product. The algorithm uses a modified three-band PSW method, which adds a scale for the water vapor channel in the improved three-band PSW method. Integrated PWV products from the radiosonde data in 2016 are used here to validate the precision of the PWV retrieved by the modified three-band and traditional two-band PSW methods. The mean bias, root mean square error(RMSE), and correlation coefficient of the PWV retrieved by the modified three-band PSW method are 0.28 mm, 4.53 mm, and 0.969, respectively. The accuracy is much better than the PWV retrieved by the two-band method, whose mean bias, RMSE, and correlation coefficient are 12.67 mm, 29.35 mm, and 0.23. Especially, in mid-or high-latitude regions, the RMSE of the PWV is improved from 10 to 2 mm by changing the inversion in the two-band method to the modified three-band PSW method. Furthermore, the modified three-band PSW results show a better consistency with the radiosonde PWV at any zonal belt and season than the two-band PSW results. This new algorithm could significantly improve the quality of the current FY-2 F/VISSR PWV product, especially at sites where the actual PWV are lower than 15 mm.
基金supported by the Xinjiang Uygur Autonomous Region Central Guided Local Science and Technology Development Fund Project(No.ZYYD2025QY17).
文摘This paper introduces an Improved Bidirectional Jump Point Search(I-BJPS)algorithm to address the challenges of the traditional Jump Point Search(JPS)in mobile robot path planning.These challenges include excessive node expansions,frequent path inflexion points,slower search times,and a high number of jump points in complex environments with large areas and dense obstacles.Firstly,we improve the heuristic functions in both forward and reverse directions to minimize expansion nodes and search time.We also introduce a node optimization strategy to reduce non-essential nodes so that the path length is optimized.Secondly,we employ a second-order Bezier Curve to smooth turning points,making generated paths more suitable for mobile robot motion requirements.Then,we integrate the Dynamic Window Approach(DWA)to improve path planning safety.Finally,the simulation results demonstrate that the I-BJPS algorithm significantly outperforms both the original unidirectional JPS algorithm and the bidirectional JPS algorithm in terms of search time,the number of path inflexion points,and overall path length,the advantages of the I-BJPS algorithm are particularly pronounced in complex environments.Experimental results from real-world scenarios indicate that the proposed algorithm can efficiently and rapidly generate an optimal path that is safe,collision-free,and well-suited to the robot’s locomotion requirements.
基金Supported by China Agriculture Research System(CARS-38)~~
文摘[Objective] This study aimed to establish a new method for preparing paraffin sections of cattle eyebal s. [Method] The conventional method was used to prepare paraffin sections for cattle eyebal s in the control and a new method termed"opening a window on cornea and refixation" was used to prepare paraffin sections for cattle eyebal s in the treatment group. [Result] After the prepared specimens in the treatment group were fixed, it could be macroscopical y observed that retina and choroid were closely connected, with detachment occurring at a smal portion be-tween the two. According to the paraffin sections, it was microscopical y observed that the continuity of trabecular meshwork was intact, as wel as the continuity be-tween different layers of eyebal wal , without detachment between them, no retinal detachment, no shrinkage of each layer of tissue cells. [Conclusion] This study pro-vides a foundation for the basic research and pathological study of eyebal s.