In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem an...In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.展开更多
利用历史分析和比较的方法,探讨无理性幂级数理论的发展脉络;纽曼第一个提出了"无理性幂级数"的名称;在纽曼工作的影响下,莫德尔、施瓦兹等人对此做出了重要贡献。F W Carroll和J H B Kemperman等人把无理性幂级数的研究纳入...利用历史分析和比较的方法,探讨无理性幂级数理论的发展脉络;纽曼第一个提出了"无理性幂级数"的名称;在纽曼工作的影响下,莫德尔、施瓦兹等人对此做出了重要贡献。F W Carroll和J H B Kemperman等人把无理性幂级数的研究纳入到不可开拓幂级数理论研究中,推广了前人的有关结果。展开更多
文摘In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.