期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Analysis of the COVID-19, Outbreak in Brazil Using Topological Weighted Centroid: An Intelligent Geographic Information System Approach
1
作者 Masoud Asadi-Zeydabadi Marina Mizukoshi +2 位作者 Massimo Buscema Giulia Massini Weldon Lodwick 《Journal of Data Analysis and Information Processing》 2024年第2期248-266,共19页
This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 t... This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 to illustrate the usefulness of TWC though any date could have been used. There are three types of TWC analyses, each type having five associated algorithms that produce fifteen maps, TWC-Original, TWC-Frequency and TWC-Windowing. We focus on TWC-Original to illustrate our approach. The TWC method without using the transportation information predicts the network for COVID-19 outbreak that matches very well with the main radial transportation routes network in Brazil. 展开更多
关键词 COVID-19 Topological weighted centroid (TWC) algorithms TWC-Original TWC-Frequency and TWC-Windowing
在线阅读 下载PDF
Improved Algorithm for Distributed Localization in Wireless Sensor Networks 被引量:3
2
作者 钟幼平 匡兴红 黄佩伟 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第1期64-69,共6页
Many sensor network applications require location awareness,but it is often too expensive to equip a global positioning system(GPS) receiver for each network node.Hence,localization schemes for sensor networks typical... Many sensor network applications require location awareness,but it is often too expensive to equip a global positioning system(GPS) receiver for each network node.Hence,localization schemes for sensor networks typically use a small number of seed nodes that know their locations and protocols whereby other nodes estimate their locations from the messages they receive.For the inherent shortcomings of general particle filter(the sequential Monte Carlo method) this paper introduces particle swarm optimization and weighted centroid algorithm to optimize it.Based on improvement a distributed localization algorithm named WC-IPF(weighted centroid algorithm improved particle filter) has been proposed for localization.In this localization scheme the initial estimate position can be acquired by weighted centroid algorithm.Then the accurate position can be gotten via improved particle filter recursively.The extend simulation results show that the proposed algorithm is efficient for most condition. 展开更多
关键词 wireless sensor network node localization particle filter particle swarm optimization weighted centroid algorithm
原文传递
Indoor localization with channel state information images from selected multiple access points
3
作者 LONG Liang WANG Xiaopeng +1 位作者 WANG Jiang LI Gang 《Journal of Measurement Science and Instrumentation》 2025年第4期569-577,共9页
To improve the accuracy of indoor localization methods with channel state information(CSI)images,a localization method that used CSI images from selected multiple access points(APs)was proposed.The method had an off-l... To improve the accuracy of indoor localization methods with channel state information(CSI)images,a localization method that used CSI images from selected multiple access points(APs)was proposed.The method had an off-line phase and an on-line phase.In the off-line phase,three APs were selected from the four APs in the localization area based on the received signal strength indication(RSSI).Next,CSI data was collected from the three selected APs using a commercial Intel 5300 network interface card.A single-channel subimage was constructed for each selected AP by combining the amplitude information from different antennas and the phase difference information between neighboring antennas.These sub-images were then merged to form a three-channel RGB image,which was subsequently fed into the convolutional neural network(CNN)for training.The CNN model was saved upon completion of training.In the on-line phase,the CSI data from the target device was collected,converted into images using the same process as in the off-line phase,and fed into the well-trained CNN model.Finally,the real position of the target device was estimated using a weighted centroid algorithm based on the model’s output probabilities.The proposed method was validated in indoor environments using two datasets,achieving good localization accuracy. 展开更多
关键词 WiFi indoor localization multiple access points channel state information image convolutional neural network(CNN) fingerprint localization weighted centroid algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部