This paper investigates how to integrate Web data into a multidimensional data warehouse (cube) for comprehensive on-line analytical processing (OLAP) and decision making. An approach for Web data-based cube const...This paper investigates how to integrate Web data into a multidimensional data warehouse (cube) for comprehensive on-line analytical processing (OLAP) and decision making. An approach for Web data-based cube construction is proposed, which includes Web data modeling based on MIX ( Metadam based Integration model for data X-change ), generic and specific mapping rules design, and a transformation algorithm for mapping Web data to a multidimensional array. Besides, the structure and implementation of the prototype of a Web data base cube are discussed.展开更多
There are a lot of heterogeneous ontologies in semantic web, and the task of ontology mapping is to find their semantic relationship. There are integrated methods that only simply combine the similarity values which a...There are a lot of heterogeneous ontologies in semantic web, and the task of ontology mapping is to find their semantic relationship. There are integrated methods that only simply combine the similarity values which are used in current multi-strategy ontology mapping. The semantic information is not included in them and a lot of manual intervention is also needed, so it leads to that some factual mapping relations are missed. Addressing this issue, the work presented in this paper puts forward an ontology matching approach, which uses multi-strategy mapping technique to carry on similarity iterative computation and explores both linguistic and structural similarity. Our approach takes different similarities into one whole, as a similarity cube. By cutting operation, similarity vectors are obtained, which form the similarity space, and by this way, mapping discovery can be converted into binary classification. Support vector machine (SVM) has good generalization ability and can obtain best compromise between complexity of model and learning capability when solving small samples and the nonlinear problem. Because of the said reason, we employ SVM in our approach. For making full use of the information of ontology, our implementation and experimental results used a common dataset to demonstrate the effectiveness of the mapping approach. It ensures the recall ration while improving the quality of mapping results.展开更多
基金The National Natural Science Foundation of China (No.60573165)
文摘This paper investigates how to integrate Web data into a multidimensional data warehouse (cube) for comprehensive on-line analytical processing (OLAP) and decision making. An approach for Web data-based cube construction is proposed, which includes Web data modeling based on MIX ( Metadam based Integration model for data X-change ), generic and specific mapping rules design, and a transformation algorithm for mapping Web data to a multidimensional array. Besides, the structure and implementation of the prototype of a Web data base cube are discussed.
基金supported by National Natural Science Foundation of China (No. 60873044)Science and Technology Research of the Department of Jilin Education (Nos. 2009498, 2011394)Opening Fund of Top Key Discipline of Computer Software and Theory in Zhejiang Provincial Colleges at Zhejiang Normal University of China(No. ZSDZZZZXK11)
文摘There are a lot of heterogeneous ontologies in semantic web, and the task of ontology mapping is to find their semantic relationship. There are integrated methods that only simply combine the similarity values which are used in current multi-strategy ontology mapping. The semantic information is not included in them and a lot of manual intervention is also needed, so it leads to that some factual mapping relations are missed. Addressing this issue, the work presented in this paper puts forward an ontology matching approach, which uses multi-strategy mapping technique to carry on similarity iterative computation and explores both linguistic and structural similarity. Our approach takes different similarities into one whole, as a similarity cube. By cutting operation, similarity vectors are obtained, which form the similarity space, and by this way, mapping discovery can be converted into binary classification. Support vector machine (SVM) has good generalization ability and can obtain best compromise between complexity of model and learning capability when solving small samples and the nonlinear problem. Because of the said reason, we employ SVM in our approach. For making full use of the information of ontology, our implementation and experimental results used a common dataset to demonstrate the effectiveness of the mapping approach. It ensures the recall ration while improving the quality of mapping results.