Vickers indentation was introduced into the originally in-plane and out-of-plane poled PLZT ceramics.The Raman spectra were in-situ recorded at selected crack tips before and after the indentations,as well as after th...Vickers indentation was introduced into the originally in-plane and out-of-plane poled PLZT ceramics.The Raman spectra were in-situ recorded at selected crack tips before and after the indentations,as well as after the applications of external electric field.The results show that the changes in Raman intensities of optical modes could be sensitively related to 90° domain switching around the crack tips which are strongly dependent on the directions of original polarization and geometric locations.When the direction of electric field was perpendicular to the direction of original polarization,the 90° domain switching at crack tips of the Vickers indentation on the originally in-plane poled PLZT ceramics caused most significant change in the Raman intensity,which inhibited the crack growth.However,when the direction of electric field was parallel to the direction of original polarization,the growth of crack tips became predominantly without the 90° domain switching,which led to the crack growth.展开更多
Instrumented and Vickers indentation testing and microstructure analysis were used to investigate zirconia toughened alumina (ZTA) and silicon carbide (SIC). Several equations were studied to relate the Vickers in...Instrumented and Vickers indentation testing and microstructure analysis were used to investigate zirconia toughened alumina (ZTA) and silicon carbide (SIC). Several equations were studied to relate the Vickers indentation hardness, Young's modulus and crack behavior to the fracture toughness. The frac- ture in SiC is unstable and occurs primarily by cleavage leading to a relatively low toughness of 3 MPa m1/2, which may be inappropriate for multi-hit capability. ZTA absorbs energy by plastic deformation, pore collapse, crack deviation and crack bridging and exhibits time dependent creep. With a relatively high toughness around 6.6 MPa m1/2, ZTA is promising for multi-hit capability. The higher accuracy of median equations in calculating the indentation fracture toughness and the relatively high c/a ratios above 2.5 suggest median type cracking for both SiC and ZTA. The Young's modulus of both ceramics was most accurately measured at lower indentation loads of about 0.5 kgf, while more accurate hardness and fracture toughness values were obtained at intermediate and at higher indentation loads beyond 5 kgf, respectively. A strong indentation size effect (ISE) was observed in both materials. The load independent hardness of SiC is 2563 HV, putting it far above the standard armor hardness requirement of 1500 HV that is barely met by ZTA.展开更多
Numerical simulation and experimental study of the Vickers indentation testing of the Al2O3 ceramic coated by diamond-like carbon(DLC) layer were conducted.The numerical analysis was implemented by a two-dimensional f...Numerical simulation and experimental study of the Vickers indentation testing of the Al2O3 ceramic coated by diamond-like carbon(DLC) layer were conducted.The numerical analysis was implemented by a two-dimensional finite element(FE) axis symmetry model.FE analysis results gave insight into the fracture mechanism of DLC films coated on brittle ceramic(Al2O3) substrates.The maximum principal stress field was used to locate the most expected area for crack formation and propagation during the Vickers indentation testing.The results show that the median crack initiates in the interface under indenter,before ring crack occurs as the indenter presses down.Finally,the plastic deformation appears when the indenter penetrates into the substrate.The thicker DLC coating increases the Vickers hardness and fracture toughness.展开更多
The brittleness and fracture behaviors of the sintered and the two-stage aged Dy-doped NdFeB magnets were studied by a unique method of acoustic emission testing and Vickers hardness indentation method in this paper.A...The brittleness and fracture behaviors of the sintered and the two-stage aged Dy-doped NdFeB magnets were studied by a unique method of acoustic emission testing and Vickers hardness indentation method in this paper.A detailed analysis on the crack propagation mechanism along the grain boundary of the main grain phase(Nd,Dy)_(2)Fe_(14)B was done.By comparing the acoustic emission energy count value(E_(n))with the Vickers hardness indentation load(P),it is shown that there is a linear relationship between En and P for both the sintered and the two-stage aged Dy-doped NdFeB magnets.According to the slope of En versus P linear lines,it can be found that the two-stage aged Dy-doped NdFeB magnet is more brittle than the sintered one.It is due to that the Ndrich grain boundary phase of the two-stage aged Dy-doped NdFeB magnet is formed as thin film and uniformly distributes around the main grain phase,which plays a significant role in increasing the intrinsic coercive force of the magnet,but decreasing its interface binding strength.Therefore,the resistance of crack propagation along the grain boundary decreases and the brittleness increases.展开更多
基金Project(2006L2003)supported by the Fujian Key Laboratory of Advanced Materials,ChinaProject(10802070)supported by the National Natural Science Foundation of China
文摘Vickers indentation was introduced into the originally in-plane and out-of-plane poled PLZT ceramics.The Raman spectra were in-situ recorded at selected crack tips before and after the indentations,as well as after the applications of external electric field.The results show that the changes in Raman intensities of optical modes could be sensitively related to 90° domain switching around the crack tips which are strongly dependent on the directions of original polarization and geometric locations.When the direction of electric field was perpendicular to the direction of original polarization,the 90° domain switching at crack tips of the Vickers indentation on the originally in-plane poled PLZT ceramics caused most significant change in the Raman intensity,which inhibited the crack growth.However,when the direction of electric field was parallel to the direction of original polarization,the growth of crack tips became predominantly without the 90° domain switching,which led to the crack growth.
基金partially supported by the DRDC-Valcartier,via DND funded project A1-000968
文摘Instrumented and Vickers indentation testing and microstructure analysis were used to investigate zirconia toughened alumina (ZTA) and silicon carbide (SIC). Several equations were studied to relate the Vickers indentation hardness, Young's modulus and crack behavior to the fracture toughness. The frac- ture in SiC is unstable and occurs primarily by cleavage leading to a relatively low toughness of 3 MPa m1/2, which may be inappropriate for multi-hit capability. ZTA absorbs energy by plastic deformation, pore collapse, crack deviation and crack bridging and exhibits time dependent creep. With a relatively high toughness around 6.6 MPa m1/2, ZTA is promising for multi-hit capability. The higher accuracy of median equations in calculating the indentation fracture toughness and the relatively high c/a ratios above 2.5 suggest median type cracking for both SiC and ZTA. The Young's modulus of both ceramics was most accurately measured at lower indentation loads of about 0.5 kgf, while more accurate hardness and fracture toughness values were obtained at intermediate and at higher indentation loads beyond 5 kgf, respectively. A strong indentation size effect (ISE) was observed in both materials. The load independent hardness of SiC is 2563 HV, putting it far above the standard armor hardness requirement of 1500 HV that is barely met by ZTA.
文摘Numerical simulation and experimental study of the Vickers indentation testing of the Al2O3 ceramic coated by diamond-like carbon(DLC) layer were conducted.The numerical analysis was implemented by a two-dimensional finite element(FE) axis symmetry model.FE analysis results gave insight into the fracture mechanism of DLC films coated on brittle ceramic(Al2O3) substrates.The maximum principal stress field was used to locate the most expected area for crack formation and propagation during the Vickers indentation testing.The results show that the median crack initiates in the interface under indenter,before ring crack occurs as the indenter presses down.Finally,the plastic deformation appears when the indenter penetrates into the substrate.The thicker DLC coating increases the Vickers hardness and fracture toughness.
基金financially supported by the China National Major Special Project for the Rare Earth and Rare Metallic Materials ((2012) 1743)
文摘The brittleness and fracture behaviors of the sintered and the two-stage aged Dy-doped NdFeB magnets were studied by a unique method of acoustic emission testing and Vickers hardness indentation method in this paper.A detailed analysis on the crack propagation mechanism along the grain boundary of the main grain phase(Nd,Dy)_(2)Fe_(14)B was done.By comparing the acoustic emission energy count value(E_(n))with the Vickers hardness indentation load(P),it is shown that there is a linear relationship between En and P for both the sintered and the two-stage aged Dy-doped NdFeB magnets.According to the slope of En versus P linear lines,it can be found that the two-stage aged Dy-doped NdFeB magnet is more brittle than the sintered one.It is due to that the Ndrich grain boundary phase of the two-stage aged Dy-doped NdFeB magnet is formed as thin film and uniformly distributes around the main grain phase,which plays a significant role in increasing the intrinsic coercive force of the magnet,but decreasing its interface binding strength.Therefore,the resistance of crack propagation along the grain boundary decreases and the brittleness increases.