期刊文献+
共找到1,105篇文章
< 1 2 56 >
每页显示 20 50 100
Forecasting China’s natural gas consumption based on a combination model 被引量:10
1
作者 Gang Xu Weiguo W ang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第5期493-496,共4页
Ensuring a sufficient energy supply is essential to a country. Natural gas constitutes a vital part in energy supply and therefore forecasting natural gas consumption reliably and accurately is an essential part of a ... Ensuring a sufficient energy supply is essential to a country. Natural gas constitutes a vital part in energy supply and therefore forecasting natural gas consumption reliably and accurately is an essential part of a country's energy policy. Over the years, studies have shown that a combinative model gives better projected results compared to a single model. In this study, we used Polynomial Curve and Moving Average Combination Projection (PCMACP) model to estimate the future natural gas consumption in China from 2009 to 2015. The new proposed PCMACP model shows more reliable and accurate results: its Mean Absolute Percentage Error (MAPE) is less than those of any previous models within the investigated range. According to the PCMACP model, the average annual growth rate will increase for the next 7 years and the amount of natural gas consumption will reach 171600 million cubic meters in 2015 in China. 展开更多
关键词 natural gas consumption forecasting combination model
在线阅读 下载PDF
Forecasting Alzheimer’s Disease Using Combination Model Based on Machine Learning
2
作者 He Li Yuhang Wu +2 位作者 Yingnan Zhang Tao Wei Yufeng Gui 《Applied Mathematics》 2018年第4期403-417,共15页
As the acceleration of aged population tendency, building models to forecast Alzheimer’s Disease (AD) is essential. In this article, we surveyed 1157 interviewees. By analyzing the results using three machine learnin... As the acceleration of aged population tendency, building models to forecast Alzheimer’s Disease (AD) is essential. In this article, we surveyed 1157 interviewees. By analyzing the results using three machine learning methods—BP neural network, SVM and random forest, we can derive the accuracy of them in forecasting AD, so that we can compare the methods in solving AD prediction. Among them, random forest is the most accurate method. Moreover, to combine the advantages of the methods, we build a new combination forecasting model based on the three machine learning models, which is proved more accurate than the models singly. At last, we give the conclusion of the connection between life style and AD, and provide several suggestions for elderly people to help them prevent AD. 展开更多
关键词 Alzheimer’s Disease BP NEURAL Network SVM RANDOM FOREST combination forecasting model
暂未订购
A Weighted Combination Forecasting Model for Power Load Based on Forecasting Model Selection and Fuzzy Scale Joint Evaluation
3
作者 Bingbing Chen Zhengyi Zhu +1 位作者 Xuyan Wang Can Zhang 《Energy Engineering》 EI 2021年第5期1499-1514,共16页
To solve the medium and long term power load forecasting problem,the combination forecasting method is further expanded and a weighted combination forecasting model for power load is put forward.This model is divided ... To solve the medium and long term power load forecasting problem,the combination forecasting method is further expanded and a weighted combination forecasting model for power load is put forward.This model is divided into two stages which are forecasting model selection and weighted combination forecasting.Based on Markov chain conversion and cloud model,the forecasting model selection is implanted and several outstanding models are selected for the combination forecasting.For the weighted combination forecasting,a fuzzy scale joint evaluation method is proposed to determine the weight of selected forecasting model.The percentage error and mean absolute percentage error of weighted combination forecasting result of the power consumption in a certain area of China are 0.7439%and 0.3198%,respectively,while the maximum values of these two indexes of single forecasting models are 5.2278%and 1.9497%.It shows that the forecasting indexes of proposed model are improved significantly compared with the single forecasting models. 展开更多
关键词 Power load forecasting forecasting model selection fuzzy scale joint evaluation weighted combination forecasting
在线阅读 下载PDF
Wavelet Decomposition Impacts on Traditional Forecasting Time Series Models 被引量:1
4
作者 W.A.Shaikh S.F.Shah +1 位作者 S.M.Pandhiani M.A.Solangi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1517-1532,共16页
This investigative study is focused on the impact of wavelet on traditional forecasting time-series models,which significantly shows the usage of wavelet algorithms.Wavelet Decomposition(WD)algorithm has been combined... This investigative study is focused on the impact of wavelet on traditional forecasting time-series models,which significantly shows the usage of wavelet algorithms.Wavelet Decomposition(WD)algorithm has been combined with various traditional forecasting time-series models,such as Least Square Support Vector Machine(LSSVM),Artificial Neural Network(ANN)and Multivariate Adaptive Regression Splines(MARS)and their effects are examined in terms of the statistical estimations.The WD has been used as a mathematical application in traditional forecast modelling to collect periodically measured parameters,which has yielded tremendous constructive outcomes.Further,it is observed that the wavelet combined models are classy compared to the various time series models in terms of performance basis.Therefore,combining wavelet forecasting models has yielded much better results. 展开更多
关键词 IMPACT wavelet decomposition combinED traditional forecasting models statistical analysis
在线阅读 下载PDF
Demand of Electric Power and Its Forecasting in Iron and Steel Complex 被引量:1
5
作者 ZHOU Dian-min GAO Feng QIAO Wei 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第5期21-24,共4页
A systematic study on the electrical load forecasting for large-scale iron and steel companies was made. After analyzing the electrical load's characteristics, an algorithm framework for the load forecasting in iron ... A systematic study on the electrical load forecasting for large-scale iron and steel companies was made. After analyzing the electrical load's characteristics, an algorithm framework for the load forecasting in iron and steel complex was formulated based on model combination and scheme filtration. The algorithm features data quality self- adaptation, convenient forecasting model extension, easy practical application, etc. , and has been successfully applied in Baoshan Iron and Steel Co Ltd, Shanghai, China, resulting in great economic benefit. 展开更多
关键词 load forecasting steel production model combination scheme filtration
在线阅读 下载PDF
An Investigation of Coal Demand in China Based on the Variable Weight Combination Forecasting Model 被引量:6
6
作者 赵国浩 郭淑芬 +1 位作者 申屠菁 王永光 《Journal of Resources and Ecology》 CSCD 2011年第2期126-131,共6页
Variable weight combination forecasting combines individual forecasting models after giving them proper weights at each time point. Weight is the type of function that changes with forecast time. A relatively rational... Variable weight combination forecasting combines individual forecasting models after giving them proper weights at each time point. Weight is the type of function that changes with forecast time. A relatively rational description of the system can be proposed with the forecasting method, which is of higher precision and better stability. Two individual forecasting models, grey system forecasting and multiple regression forecasting, were generated based on the historical data and influencing factors of coal demand in China from 1981 to 2008. According to the theory of combination forecasting, the variable weight combination forecasting model was formulated to forecast coal demand in China for the next 12 years. 展开更多
关键词 Variable Weight combination forecasting model coal demand energy resources management
原文传递
A COMBINED MODEL OF WIND, WAVE, TIDE AND STORM SURGES
7
作者 谢强 侯一筠 +2 位作者 尹宝树 范顺庭 程明华 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2000年第4期297-300,共4页
A combined numerical model of wind, wave, tide, and storm surges was built on the basis of the “wind field model in limited sea surface areas”. When used to forecast the sea surface wind, wave height and water level... A combined numerical model of wind, wave, tide, and storm surges was built on the basis of the “wind field model in limited sea surface areas”. When used to forecast the sea surface wind, wave height and water level, it can describe them very well. 展开更多
关键词 combined numerical model wind-wave-tide-storm surges forecast
原文传递
A new hybrid method with data‑characteristic‑driven analysis for artificial intelligence and robotics index return forecasting
8
作者 Yue‑Jun Zhang Han Zhang Rangan Gupta 《Financial Innovation》 2023年第1期2019-2041,共23页
Forecasting returns for the Artificial Intelligence and Robotics Index is of great significance for financial market stability,and the development of the artificial intelligence industry.To provide investors with a mo... Forecasting returns for the Artificial Intelligence and Robotics Index is of great significance for financial market stability,and the development of the artificial intelligence industry.To provide investors with a more reliable reference in terms of artificial intelligence index investment,this paper selects the NASDAQ CTA Artificial Intelligence and Robotics(AIRO)Index as the research target,and proposes innovative hybrid methods to forecast returns by considering its multiple structural characteristics.Specifically,this paper uses the ensemble empirical mode decomposition(EEMD)method and the modified iterative cumulative sum of squares(ICSS)algorithm to decompose the index returns and identify the structural breakpoints.Furthermore,it combines the least-square support vector machine approach with the particle swarm optimization method(PSO-LSSVM)and the generalized autoregressive conditional heteroskedasticity(GARCH)type models to construct innovative hybrid forecasting methods.On the one hand,the empirical results indicate that the AIRO index returns have complex structural characteristics,and present time-varying and nonlinear characteristics with high complexity and mutability;on the other hand,the newly proposed hybrid forecasting method(i.e.,the EEMD-PSO-LSSVM-ICSS-GARCH models)which considers these complex structural characteristics,can yield the optimal forecasting performance for the AIRO index returns. 展开更多
关键词 Artificial Intelligence and Robotics index return forecasting PSO-LSSVM model GARCH model Decomposition and integration model combination model
在线阅读 下载PDF
Forecasting Realized Volatility Using Subsample Averaging
9
作者 Huiyu Huang Tae-Hwy Lee 《Open Journal of Statistics》 2013年第5期379-383,共5页
When the observed price process is the true underlying price process plus microstructure noise, it is known that realized volatility (RV) estimates will be overwhelmed by the noise when the sampling frequency approach... When the observed price process is the true underlying price process plus microstructure noise, it is known that realized volatility (RV) estimates will be overwhelmed by the noise when the sampling frequency approaches infinity. Therefore, it may be optimal to sample less frequently, and averaging the less frequently sampled subsamples can improve estimation for quadratic variation. In this paper, we extend this idea to forecasting daily realized volatility. While subsample averaging has been proposed and used in estimating RV, this paper is the first that uses subsample averaging for forecasting RV. The subsample averaging method we examine incorporates the high frequency data in different levels of systematic sampling. It first pools the high frequency data into several subsamples, then generates forecasts from each subsample, and then combines these forecasts. We find that in daily S&P 500 return realized volatility forecasts, subsample averaging generates better forecasts than those using only one subsample. 展开更多
关键词 Subsample AVERAGING forecast combination HIGH-FREQUENCY Data Realized VOLATILITY ARFIMA model HAR model
暂未订购
Nonlinear Combination Forecasting Model and Its Application
10
作者 ZHOU Chuanshi\ LIU Yongqing (Ins.of System Engineer, South China Univ. of Science Technology,Guangzhou 510641) 《Systems Science and Systems Engineering》 CSCD 1998年第2期124-128,共5页
This paper mainly discusses the nonlinear combination forecasting model and states that the nonlinear combination forecasting model is better than linear combination forecasting model in many aspect.
关键词 NONLINEAR combination forecasting model precision.
原文传递
岩石动态抗拉强度预测的组合模型及软件开发
11
作者 亓帅 王超 +3 位作者 金子浚 贺子旺 喻豪 张绍源 《有色金属(矿山部分)》 2026年第1期140-148,共9页
针对岩石抗拉强度测试存在设备要求高、样本制备复杂等局限性,选取岩石密度、试件直径、杨氏模量、静态抗拉强度、加载速率和试验方法作为预测指标,动态抗拉强度为输出指标,收集164组样本数据构建岩石动态抗拉强度预测的样本数据库;通... 针对岩石抗拉强度测试存在设备要求高、样本制备复杂等局限性,选取岩石密度、试件直径、杨氏模量、静态抗拉强度、加载速率和试验方法作为预测指标,动态抗拉强度为输出指标,收集164组样本数据构建岩石动态抗拉强度预测的样本数据库;通过融合时间卷积网络(Temporal Convolutional Networks,TCN)的长序列建模能力与科尔莫哥罗夫-阿诺德网络(Kolmogorov-Arnold Networks,KAN)的可解释非线性变换优势,构建岩石动态抗拉强度预测的TCN-KAN组合模型;采用五折交叉验证对模型进行训练,并使用沙普利加和解释(Shapley Additive Explanations,SHAP)方法对模型预测结果进行可解释性分析,结果表明:组合模型在均方误差(3.07)、均方根误差(1.75)、平均绝对误差(1.27)、平均绝对百分比误差(10.22%)和决定系数(97.88%)等指标上均优于对比模型,加载速率和静态抗拉强度两个指标对预测结果的影响最为显著;最后,基于TCN-KAN组合模型开发智能应用软件并开展了5个工程实例应用,进一步验证了组合模型的预测准确性和可靠性,为岩石动态抗拉强度预测提供了一种智能新方法。 展开更多
关键词 动态抗拉强度 时间卷积网络 科尔莫哥罗夫-阿诺德网络 组合预测模型 SHAP可解释性分析 应用软件
在线阅读 下载PDF
基于IOWA算子组合预测模型的重庆市物流需求预测分析
12
作者 肖玉婷 徐改丽 《黑龙江科学》 2026年第1期24-27,32,共5页
随着物流运输业的迅速发展,重庆市作为西南交通运输网络上的重要枢纽,科学准确地预测其物流需求是优化区域资源配置决策的重要依据,在进一步推动物流运输业发展中起着重要作用。以GM(1,1)模型和Brown双参数二次指数平滑模型为基础,通过... 随着物流运输业的迅速发展,重庆市作为西南交通运输网络上的重要枢纽,科学准确地预测其物流需求是优化区域资源配置决策的重要依据,在进一步推动物流运输业发展中起着重要作用。以GM(1,1)模型和Brown双参数二次指数平滑模型为基础,通过BUM函数确定各模型的权重,再利用IOWA算子构建GM-Brown组合预测模型,从而减少预测误差,优化预测效果。为说明所采用方法的有效性,以2014—2023年重庆市货物运输量为数据进行实证分析。实证结果显示,组合模型平均相对误差为1.99%,明显低于GM(1,1)模型和Brown双参数二次指数平滑模型的相对误差。这一结果表明,基于IOWA算子的组合模型能有效提高预测精度,预测结果为优化重庆市物流资源配置提供了重要参考。 展开更多
关键词 物流需求 GM(1 1)模型 Brown双参数二次指数平滑模型 组合预测模型 IOWA算子
在线阅读 下载PDF
IMPACT OF SUMMER WARMING ON DYNAMICS-STATISTICS-COMBINED METHOD TO PREDICT THE SUMMER TEMPERATURE IN CHINA
13
作者 苏海晶 乔少博 +1 位作者 杨杰 王晓娟 《Journal of Tropical Meteorology》 SCIE 2017年第4期440-449,共10页
Based on NCEP/NCAR daily reanalysis data, climate trend rate and other methods are used to quantitatively analyze the change trend of China's summer observed temperature in 1983—2012. Moreover, a dynamics-statist... Based on NCEP/NCAR daily reanalysis data, climate trend rate and other methods are used to quantitatively analyze the change trend of China's summer observed temperature in 1983—2012. Moreover, a dynamics-statistics-combined seasonal forecast method with optimal multi-factor portfolio is applied to analyze the impact of this trend on summer temperature forecast. The results show that: in the three decades, the summer temperature shows a clear upward trend under the condition of global warming, especially over South China, East China, Northeast China and Xinjiang Region, and the trend rate of national average summer temperature was 0.27℃ per decade. However, it is found that the current business model forecast(Coupled Global Climate Model) of National Climate Centre is unable to forecast summer warming trends in China, so that the post-processing forecast effect of dynamics-statistics-combined method is relatively poor. In this study, observed temperatures are processed first by removing linear fitting trend, and then adding it after forecast to offset the deficiency of model forecast indirectly. After test, ACC average value in the latest decade was 0.44 through dynamics-statistics-combined independent sample return forecast. The temporal correlation(TCC) between forecast and observed temperature was significantly improved compared with direct forecast results in most regions, and effectively improved the skill of the dynamics-statistics-combined forecast method in seasonal temperature forecast. 展开更多
关键词 dynamics-statistics-combined global warming temperature forecast model error correction
在线阅读 下载PDF
基于SCI-CA模型的船舶纵摇多维多步预测方法 被引量:1
14
作者 王宇超 赵洵 +1 位作者 杨周琦 傅荟璇 《控制与决策》 北大核心 2025年第1期64-70,共7页
海洋环境复杂多变,船舶航行容易受到风浪、洋流等因素的干扰,船舶运动具有非线性、耦合性等特点.针对传统的船舶运动姿态预测方法对时序数据的提取效率尚有不足,难以达到高精度预测效果的问题,提出样本卷积交互-通道注意力(SCI-CA)神经... 海洋环境复杂多变,船舶航行容易受到风浪、洋流等因素的干扰,船舶运动具有非线性、耦合性等特点.针对传统的船舶运动姿态预测方法对时序数据的提取效率尚有不足,难以达到高精度预测效果的问题,提出样本卷积交互-通道注意力(SCI-CA)神经网络船舶纵摇运动预测模型.该模型采用多类别船舶运动姿态数据作为输入,将输入拆分为两个子序列,利用样本卷积交互网络(SCI)的递归下采样卷积交互结构,结合多分辨率聚合而成的丰富特征,提高船舶运动数据深层特征的利用率.再通过通道注意力机制(CA)提高有效通道的权重比例,并以残差结构输入到全连接层,得到最后的预测结果.实船数据验证结果表明,SCI-CA组合模型预测结果较其他模型预测精度高,其平均绝对百分比误差(MAPE)、均方根误差(RMSE)均有明显降低,验证了SCI-CA模型预测船舶运动的有效性. 展开更多
关键词 船舶纵摇 SCI-Net 通道注意力 交互学习结构 组合模型 多步预测
原文传递
考虑特征重组和BiGRU-Attention-XGBoost模型的超短期负荷功率预测 被引量:3
15
作者 李练兵 高国强 +3 位作者 陈伟光 付文杰 张超 赵莎莎 《现代电力》 北大核心 2025年第3期571-581,共11页
超短期电力负荷预测作为电力系统的基本组成,能为生产调度计划的制定提供重要依据。然而,电力负荷具有非线性、时变性和不确定性,充分挖掘其潜在特征并分别预测,是提升预测准确性的关键。提出一种基于自适应局部迭代滤波(adaptive local... 超短期电力负荷预测作为电力系统的基本组成,能为生产调度计划的制定提供重要依据。然而,电力负荷具有非线性、时变性和不确定性,充分挖掘其潜在特征并分别预测,是提升预测准确性的关键。提出一种基于自适应局部迭代滤波(adaptive local iterative filtering,ALIF)的BiGRU-Attention-XGBoost电力负荷组合预测模型。该模型基于ALIF-SE实现将历史负荷序列分解重组为周期序列、波动序列和趋势序列;通过Attention机制对BiGRU模型进行改进,并结合XGBoost模型构建基于时变权重组合的电力负荷预测模型。实验分析表明,输入模型数据经过ALIF-SE处理后预测精度有明显提升;所提组合模型在工作日和节假日均具有较好的预测效果,预测误差大部分在5%以下;通过在不同负荷数据集下进行实验对比,验证了所提预测方法的可迁移性。实验结果证明,所提模型具有有效性、准确性和可行性。 展开更多
关键词 自适应局部迭代滤波 样本熵 深度学习 组合模型 超短期负荷预测
原文传递
清洁能源关键矿产加工产品供需预测及保供措施研究——以锂、钴、镍为例 被引量:3
16
作者 易杏花 王笑笑 +1 位作者 成金华 胡松琴 《资源与产业》 2025年第1期63-76,共14页
科学预测清洁能源关键矿产加工产品供需量,探索提升中国关键矿产加工产品供给保障水平的有效路径对于保障关键矿产产业链与供应链安全、稳定具有重要的现实意义。聚焦于锂、钴、镍三大清洁能源关键矿产加工产品,采用灰色预测模型、ARIM... 科学预测清洁能源关键矿产加工产品供需量,探索提升中国关键矿产加工产品供给保障水平的有效路径对于保障关键矿产产业链与供应链安全、稳定具有重要的现实意义。聚焦于锂、钴、镍三大清洁能源关键矿产加工产品,采用灰色预测模型、ARIMA模型及各单项模型基于熵值法的组合模型,对2023—2030年我国清洁能源关键矿产资源加工产品的市场供求趋势进行了系统的分析。研究表明:1)基于熵值法的组合预测模型在预测锂、钴、镍矿加工产品市场需求量与供给量时表现出色,相较于单项预测方法,其预测精度显著提升,误差大幅减少;2)在考虑二次资源贡献后,预测2030年锂、钴矿加工产品市场需求将分别达到153.74万t、25.34万t,而供给量分别为183.56万t、23.36万t,表明市场供需趋于平衡,但需警惕技术革新对市场的潜在扰动;3)对于镍矿加工产品,若不计入再生资源,其市场供需矛盾突出,预示需紧急加强国内镍矿加工产品的供应能力以保障行业长期稳定发展。基于此,提出如下保供策略:针对锂资源,应重视深层卤水提锂技术的研发与应用,推广“油锂同探”模式,强化技术创新,以减少对进口的依赖并应对市场波动风险;对于钴矿资源,倡导循环经济,加大再生钴回收技术的研发与应用力度,提高资源综合利用率,缓解原生钴矿开采压力;就镍资源而言,建议加强与“一带一路”沿线国家的合作,拓展海外投资与产能合作,实现进口来源多元化,同时加强国内镍矿资源的勘查与开发,确保镍资源供应链的稳定性与安全性。 展开更多
关键词 清洁能源 关键矿产加工产品 供需预测 ARIMA-GM-熵值法组合模型
原文传递
基于SSA-XGBoost的综合型商业建筑停车需求预测研究 被引量:1
17
作者 李聪颖 贠开拓 +4 位作者 张浩星 张洪涛 袁锴璐 李坤 吴佳西 《武汉理工大学学报(交通科学与工程版)》 2025年第1期15-20,27,共7页
文中基于综合型商业建筑停车需求与机动车吸引量的关系,构建综合型商业建筑停车需求影响因素体系;运用麻雀搜索算法优化极限梯度提升树的超参数,建立综合型商业建筑停车需求预测组合模型;以西安市58个综合型商业建筑的停车需求预测为例... 文中基于综合型商业建筑停车需求与机动车吸引量的关系,构建综合型商业建筑停车需求影响因素体系;运用麻雀搜索算法优化极限梯度提升树的超参数,建立综合型商业建筑停车需求预测组合模型;以西安市58个综合型商业建筑的停车需求预测为例,对比SSA-XGBoost模型与支持向量回归模型、XGBoost模型、lasso回归模型的预测结果.结果表明:SSA-XGBoost模型的R2值为0.963、平均绝对误差为75.584、均方根误差为85.749,相较于其他几种预测模型有更高的R2值和更小的预测误差. 展开更多
关键词 停车需求预测 综合型商业 XGBoost 麻雀搜索算法 组合模型
在线阅读 下载PDF
基于VMD多阶段优化的短时交通流预测研究 被引量:1
18
作者 陈以 齐兴宇 +1 位作者 胡水源 姚宇琛 《计算机仿真》 2025年第1期126-132,共7页
针对交通流数据存在的随机性与非线性等导致短时交通流预测精度不高的问题,给出一种多阶段优化策略和改进澳洲野狗算法(Improved Dingo Optimization Algorithm, IDOA)优化LSSVM、LSTM和XGBoost参数的组合预测模型(MO-IDOA-LLX)。使用... 针对交通流数据存在的随机性与非线性等导致短时交通流预测精度不高的问题,给出一种多阶段优化策略和改进澳洲野狗算法(Improved Dingo Optimization Algorithm, IDOA)优化LSSVM、LSTM和XGBoost参数的组合预测模型(MO-IDOA-LLX)。使用变分模态分解(Variational Modal Decomposition, VMD)将交通流分解,借助样本熵(Sample Entropy, SE)将子序列重组,得到趋势、细节和随机分量并采用相空间重构算法(Phase Space Reconstruction, PSR)对其进行处理。通过4个基准函数验证IDOA算法性能。对重构后的分量分别建立IDOA-LSSVM,IDOA-LSTM以及IDOA-XGBoost三个子模型,叠加各子模型的预测值得到预测结果。实验结果表明:其它预测模型相比,上述模型预测精度均有不同程度的提升,输出的预测结果更接近真实值。 展开更多
关键词 短时交通流预测 组合预测模型 改进澳洲野狗优化算法 变分模态分解 样本熵
在线阅读 下载PDF
基于组合模型的风洞试验六元力预测
19
作者 宋佳音 张林 周宏威 《自动化技术与应用》 2025年第9期6-11,共6页
风洞试验对于试验设备和场地具有较高要求,且耗时长,成本高,数据获取困难。为此提出基于组合模型对风洞试验六元力进行预测。首先利用SMOTE过采样方法对风洞试验小样本数据进行数据扩充,然后采用极限梯度提升算法(extreme gradient boos... 风洞试验对于试验设备和场地具有较高要求,且耗时长,成本高,数据获取困难。为此提出基于组合模型对风洞试验六元力进行预测。首先利用SMOTE过采样方法对风洞试验小样本数据进行数据扩充,然后采用极限梯度提升算法(extreme gradient boosting,XGBoost)、K最近邻算法(k-nearest neighbor,KNN)和多层感知器(multilayer perceptron,MLP)3个单一模型建立XGBoost-KNN-MLP组合模型。为克服权重带来的影响,采用人工免疫算法(artificial immune algorithm,AIA)对组合模型的权重系数进行优化建立AIA-XKM组合预测模型。预测效果以平均绝对误差(mean absolute error,MAE)、均方误差(mean square error,MSE)、决定系数(r-square,R2)和均方根误差(root mean squared error,RMSE)为评价指标。并与经典算法XGBoost、KNN、MLP、SVM、RNN构建的预测模型进行对比。实验结果表明,所提出的AIA-XKM组合预测模型在六元力预测中弥补了单一模型存在的不足,在预测精度和泛化能力中表现出更高性能。将该预测模型应用于风洞试验前,能够提前预测试验的输出数值,判断试验的可行性与准确性,提高风洞试验的成功率,减少无用试验。 展开更多
关键词 数据预测 小样本 组合模型 风洞试验
在线阅读 下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部