Modern day VTOL fixed-wing aircraft based on quadplane design is relative<span style="font-family:Verdana;">ly simple and reliable due to lack of complex mechanical components</span><span styl...Modern day VTOL fixed-wing aircraft based on quadplane design is relative<span style="font-family:Verdana;">ly simple and reliable due to lack of complex mechanical components</span><span style="font-family:Verdana;"> com</span><span style="font-family:Verdana;">pared to tilt-wings or tilt-rotors in the pre-80’s era. Radio-controlled </span><span style="font-family:Verdana;">aerobatic airplanes have thrust-to-weight ratio of greater than unity and are capable of performing a range of impressive maneuvers including the so-called harrier maneuver. We hereby present a new maneuver known as the retarded harrier </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">that is applicable to un/manned fixed-wing aircraft for achieving VTOL flight with a better forward flight performance than a quadplane in terms of weight, speed and esthetics.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> An airplane with tandem roto-stabilizers is also presented as an efficient airframe to achieve VTOL via retarded harrier maneuver, and detailed analysis is given for hovering at 45° and 60° and comparison is made against the widely adopted quadplane. This work also includes experimental demonstration of retarded harrier maneuver using a small remotely pilot airplane of wingspan 650 mm.</span></span></span>展开更多
在当前空中交通管理体系中,基于均匀栅格的飞行器航迹规划方法广泛应用,但存在局限性。空域的均匀栅格划分无法自适应匹配空域的障碍物变尺度分布,导致特定空域航迹规划效率较低、计算代价较大,且在动态变化的空域环境中,航迹动态调整...在当前空中交通管理体系中,基于均匀栅格的飞行器航迹规划方法广泛应用,但存在局限性。空域的均匀栅格划分无法自适应匹配空域的障碍物变尺度分布,导致特定空域航迹规划效率较低、计算代价较大,且在动态变化的空域环境中,航迹动态调整效率难以满足实际需求。针对以上问题,研究空域网格尺度自适应拓扑算法,根据障碍物分布特点实现空域的自适应Delaunay三角划分,并能够实现空域结构随着障碍物的动态调整快速高效局部重构;进一步基于空域结构自适应拓扑构建航迹搜索网络,采用A*算法在搜索网络上搜索初始航迹,针对初始航迹较长,折角尖锐的问题,设计了1种航迹实效化算法,通过局部检测优化航迹,使其转弯处圆弧过渡,不符合要求的圆弧,通过调整安全边界半径进行优化,以契合固定翼垂直起降飞行器(vertical take-off and landing,VTOL)飞行器运行特性。具体算例仿真结果表明空域网格尺度自适应拓扑算法能够使空域栅格数量减少69.33%,显著压缩搜索空间;航迹实效化算法能够使航迹长度缩短8%~15%,且航迹的光滑度显著提升,有效降低飞行控制难度与能耗。综上所述,本文的研究为固定翼VTOL飞行器的低空航迹规划提供了1种高效、实用的解决方案。展开更多
研究了在未知的、动态的室内走廊环境中,采用双目立体视觉引导电动VTOL(Vertical Take-Off and Landing)飞行器安全飞行的方法.使用安装在飞机上的两个微型摄像头从不同的位置获取图像,由双目立体视觉理论恢复其周围环境特征点的三维坐...研究了在未知的、动态的室内走廊环境中,采用双目立体视觉引导电动VTOL(Vertical Take-Off and Landing)飞行器安全飞行的方法.使用安装在飞机上的两个微型摄像头从不同的位置获取图像,由双目立体视觉理论恢复其周围环境特征点的三维坐标.采用角点匹配方法计算视差,实现无人机在走廊中的横向坐标定位.采用区域灰度相关算法进行立体匹配获取视差图,从视差图上检测出障碍物,并给出避障导航点.初步实验验证表明,该方法可行性较高,可以作为进一步研究的基础.展开更多
垂直起降(Vertical takeoff and landing,VTOL)飞行器是具有3个自由度、2个控制输入的非线性欠驱动控制系统,为了解决严重耦合的VTOL欠驱动系统的输出跟踪问题,首先将VTOL动力学模型解耦成一个最小相位系统和一个非最小相位系统,然后分...垂直起降(Vertical takeoff and landing,VTOL)飞行器是具有3个自由度、2个控制输入的非线性欠驱动控制系统,为了解决严重耦合的VTOL欠驱动系统的输出跟踪问题,首先将VTOL动力学模型解耦成一个最小相位系统和一个非最小相位系统,然后分别针对这两个解耦子系统设计滑模控制器,并通过Lyapunov理论证明系统的稳定性,最后仿真结果表明所设计的滑模控制器实现了对轨迹的无稳态误差跟踪,具有较好的鲁棒性,能够为此类欠驱动系统的输出跟踪问题提供设计参考。展开更多
The drone was developed with the use of unmanned aircraft systems in the initial military sector based on the combination of aerospace technology and information and communication technologies in a variety of usabilit...The drone was developed with the use of unmanned aircraft systems in the initial military sector based on the combination of aerospace technology and information and communication technologies in a variety of usability, including the civilian sectors. Developed for the field of reconnaissance, it is used in both civilian and police sectors as traffic monitoring and high altitude reconnaissance missions. It is used in broadcasting and surveillance, while continuously expanding into the areas of courier delivery and rescue missions. Based on the convergence of aviation technology such as various SW, sensor and flight control to utilize unmanned system and information communication technology, commercialization of related technology is being developed as a very diverse route.?In this paper, we propose and manufacture of?a VTOL UAV. Design process referred to the VTOL development process?that has been devised by us, and actual building of a UAV also applied the same VTOL development concept. In order to understand the aerodynamic characteristics of the aircraft, we have applied the aerodynamic design theory and used the CAE method that can replace the actual wind tunnel test. We tested the selection method and criteria for the internal modules that make up the UAV, and we were able to assemble the product. FW coding of flight control computer was conducted for VTOL control. In addition, we developed a LTE communication module for the long distance flight, and carried out flight experiments with GCS to observe and respond to the flight situation from the ground. Flight test results showed that stable transition flight was possible with broadband.?We could see that the actual performance results were met, compared to our development target values.展开更多
文摘Modern day VTOL fixed-wing aircraft based on quadplane design is relative<span style="font-family:Verdana;">ly simple and reliable due to lack of complex mechanical components</span><span style="font-family:Verdana;"> com</span><span style="font-family:Verdana;">pared to tilt-wings or tilt-rotors in the pre-80’s era. Radio-controlled </span><span style="font-family:Verdana;">aerobatic airplanes have thrust-to-weight ratio of greater than unity and are capable of performing a range of impressive maneuvers including the so-called harrier maneuver. We hereby present a new maneuver known as the retarded harrier </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">that is applicable to un/manned fixed-wing aircraft for achieving VTOL flight with a better forward flight performance than a quadplane in terms of weight, speed and esthetics.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> An airplane with tandem roto-stabilizers is also presented as an efficient airframe to achieve VTOL via retarded harrier maneuver, and detailed analysis is given for hovering at 45° and 60° and comparison is made against the widely adopted quadplane. This work also includes experimental demonstration of retarded harrier maneuver using a small remotely pilot airplane of wingspan 650 mm.</span></span></span>
文摘在当前空中交通管理体系中,基于均匀栅格的飞行器航迹规划方法广泛应用,但存在局限性。空域的均匀栅格划分无法自适应匹配空域的障碍物变尺度分布,导致特定空域航迹规划效率较低、计算代价较大,且在动态变化的空域环境中,航迹动态调整效率难以满足实际需求。针对以上问题,研究空域网格尺度自适应拓扑算法,根据障碍物分布特点实现空域的自适应Delaunay三角划分,并能够实现空域结构随着障碍物的动态调整快速高效局部重构;进一步基于空域结构自适应拓扑构建航迹搜索网络,采用A*算法在搜索网络上搜索初始航迹,针对初始航迹较长,折角尖锐的问题,设计了1种航迹实效化算法,通过局部检测优化航迹,使其转弯处圆弧过渡,不符合要求的圆弧,通过调整安全边界半径进行优化,以契合固定翼垂直起降飞行器(vertical take-off and landing,VTOL)飞行器运行特性。具体算例仿真结果表明空域网格尺度自适应拓扑算法能够使空域栅格数量减少69.33%,显著压缩搜索空间;航迹实效化算法能够使航迹长度缩短8%~15%,且航迹的光滑度显著提升,有效降低飞行控制难度与能耗。综上所述,本文的研究为固定翼VTOL飞行器的低空航迹规划提供了1种高效、实用的解决方案。
文摘研究了在未知的、动态的室内走廊环境中,采用双目立体视觉引导电动VTOL(Vertical Take-Off and Landing)飞行器安全飞行的方法.使用安装在飞机上的两个微型摄像头从不同的位置获取图像,由双目立体视觉理论恢复其周围环境特征点的三维坐标.采用角点匹配方法计算视差,实现无人机在走廊中的横向坐标定位.采用区域灰度相关算法进行立体匹配获取视差图,从视差图上检测出障碍物,并给出避障导航点.初步实验验证表明,该方法可行性较高,可以作为进一步研究的基础.
文摘垂直起降(Vertical takeoff and landing,VTOL)飞行器是具有3个自由度、2个控制输入的非线性欠驱动控制系统,为了解决严重耦合的VTOL欠驱动系统的输出跟踪问题,首先将VTOL动力学模型解耦成一个最小相位系统和一个非最小相位系统,然后分别针对这两个解耦子系统设计滑模控制器,并通过Lyapunov理论证明系统的稳定性,最后仿真结果表明所设计的滑模控制器实现了对轨迹的无稳态误差跟踪,具有较好的鲁棒性,能够为此类欠驱动系统的输出跟踪问题提供设计参考。
文摘The drone was developed with the use of unmanned aircraft systems in the initial military sector based on the combination of aerospace technology and information and communication technologies in a variety of usability, including the civilian sectors. Developed for the field of reconnaissance, it is used in both civilian and police sectors as traffic monitoring and high altitude reconnaissance missions. It is used in broadcasting and surveillance, while continuously expanding into the areas of courier delivery and rescue missions. Based on the convergence of aviation technology such as various SW, sensor and flight control to utilize unmanned system and information communication technology, commercialization of related technology is being developed as a very diverse route.?In this paper, we propose and manufacture of?a VTOL UAV. Design process referred to the VTOL development process?that has been devised by us, and actual building of a UAV also applied the same VTOL development concept. In order to understand the aerodynamic characteristics of the aircraft, we have applied the aerodynamic design theory and used the CAE method that can replace the actual wind tunnel test. We tested the selection method and criteria for the internal modules that make up the UAV, and we were able to assemble the product. FW coding of flight control computer was conducted for VTOL control. In addition, we developed a LTE communication module for the long distance flight, and carried out flight experiments with GCS to observe and respond to the flight situation from the ground. Flight test results showed that stable transition flight was possible with broadband.?We could see that the actual performance results were met, compared to our development target values.