The Klobuchar model has been widely used to correct the ionospheric delay in applications. However, the NVTEC(Nighttime Vertical Total Electron Content) of the Klobuchar model employs an empirical constant of 9 TECU(T...The Klobuchar model has been widely used to correct the ionospheric delay in applications. However, the NVTEC(Nighttime Vertical Total Electron Content) of the Klobuchar model employs an empirical constant of 9 TECU(Total Electron Content Unit) at L1 frequency. In this paper, the rationality and reliability of the nighttime constant setting are investigated using the GIM(Global Ionosphere Map) product of the IGS(International GNSS Service) from 1998 to 2015. Our study indicates that the suitable time span of NVTEC average in nighttime should be between 20:00 and 06:00 LT(local time). The NVTEC is highly correlated with seasons, having positive extremes in spring and autumn and negative extremes in summer through the mean values in all latitudes. In addition to seasonal dependence, solar activity in the solar cycle 23 strongly influences NVTEC as well and leads to its variation within a range between 25 and30 TECU in spring and autumn at solar maximum, which is about 1.5 times greater than that in summer and winter. The NVTEC also has a dependence on the latitude at solar maximum, with the mean value from 30 TECU in low latitudinal regions to 15 TECU in high latitudinal regions. Therefore, these results demonstrate that the nighttime VTEC has much greater deviations from the imperial constant in the Klobuchar model, and the newly estimated constant is expected to bring improvement to the predictability of the Klobuchar ionospheric delay model in nighttime.展开更多
为了对区域电离层延迟进行实时模型化,利用中国区域GPS实测资料,基于球冠谐函数模型、低阶球谐函数模型、多项式模型和Kriging内插方法,构建了电离层延迟模型。重点讨论了电离层垂直总电子含量(vertical total electron content,VTEC)...为了对区域电离层延迟进行实时模型化,利用中国区域GPS实测资料,基于球冠谐函数模型、低阶球谐函数模型、多项式模型和Kriging内插方法,构建了电离层延迟模型。重点讨论了电离层垂直总电子含量(vertical total electron content,VTEC)的空间变异性、相关性的统计计算和Kriging内插估计方法,实现了中国区域VTEC格网实时建模。验证结果表明,高纬度地区VTEC拟合精度优于低纬度地区,Kriging内插估计和多项式模型结果的拟合内符合精度明显优于球冠谐函数模型和低阶球谐函数模型。但多项式拟合的格网,其方差则存在明显的边际效应,拟合区域中央精度较高,区域边缘地带精度明显下降;Kriging算法估计的格网点VTEC方差更符合实际情况,穿刺点多的地方,格网点精度较高。展开更多
多项式拟合建模方法常用于建立单站或小区域电离层VTEC(Vretical Total Electron Content)模型。由于电离层性质时刻变化,通常采用分段常数的方法分时段估计模型系数,各段模型系数不相关,时段间VTEC连续性无法保证。本文分别采用对拟合...多项式拟合建模方法常用于建立单站或小区域电离层VTEC(Vretical Total Electron Content)模型。由于电离层性质时刻变化,通常采用分段常数的方法分时段估计模型系数,各段模型系数不相关,时段间VTEC连续性无法保证。本文分别采用对拟合结果平滑和附加约束条件估计模型系数的方法改进分段模型时段间节点处不连续的不足,建立顾及时段间连续性的分段VTEC多项武模型,并利用实测BDS(Beidou Navigation Satellite System)观测数据求解单站VTEC。实验结果证明,对结果的平滑方法和附加约束条件系数估计方法均能实现VTEC序列时段节点连续,其中以模型展开点处拟合VTEC相等为连续性约束条件的系数估计方法效果最优,拟合VTEC与GIM(Global Ionosphere Map)参考值符合较好,拟合序列能较准确反映电离层变化规律。展开更多
Since IGY (International Geophysical Year), through coordinated global observations, ionospheric research has been carried out by many countries. This effort primarily helped in the design and operation of HF radio wa...Since IGY (International Geophysical Year), through coordinated global observations, ionospheric research has been carried out by many countries. This effort primarily helped in the design and operation of HF radio wave communication systems. The Indian region covers a highly variable part of the equatorial electrojet and EIA (Equatorial Ionisation Anomaly) phenomena making its predictability difficult. With the advent of satellite communication and navigation, the need for accurate ionospheric TEC (Total Electron Content) models at global and regional scales has been stressed. The GAGAN (GPS Aided Geo Augmented Navigation) project jointly undertaken by the Indian Space Research Organisation (ISRO) and the Airport Authority of India (AAI) aims at effectively utilising the Global Navigational Satellite System (GNSS) to determine position coordinates accurately for aircraft precision landing applications. For this purpose the range errors are estimated by using a ground network of TEC stations spread over Indian region. The near simultaneous data collected from these dual frequency GPS stations can be used to generate the geo-referenced TEC values for various applications. The author has developed necessary algorithm and associated computer programmes for a real-time vertical TEC (VTEC) model based on TEC data collected from the GAGAN ground based network stations. The model has been tested and sample results presented here show that it adequately provides for the latitudinal resolution of 1° for the entire longitude span and also for two longitude blocks (73 - 83 & 83 - 93°E) separately. Cubic spline and bilinear interpolation techniques are used for filling up temporal and spatial data gaps. The model provides tabulated output of hourly average VTEC data with latitude for ready use, as well as graphical displays of VTEC maps and contours for monitoring purpose. The real-time model and its extensions are also being used for detailed scientific studies;examples of these show small day to day variability of VTEC without any change in solar activity and indication of the change in the shape of the VTEC diurnal curve with season. The present model will be used for further studies to derive the monthly average variation of the diurnal pattern and the relationship between VTEC peak amplitudes with changes in solar activity. The new information generated can be fed back to improve the real-time model so that eventually the dependence of such models on ground based network stations data can be minimised.展开更多
利用中国地壳运动监测网络CMONOC中85个测站的GPS观测数据,建立3种常用的区域电离层模型:多项式函数模型(polynomial model,POLY)、低阶球谐函数模型(low-degree spheric function model,LSF)和球冠谐函数模型(spheric cap harmonic mod...利用中国地壳运动监测网络CMONOC中85个测站的GPS观测数据,建立3种常用的区域电离层模型:多项式函数模型(polynomial model,POLY)、低阶球谐函数模型(low-degree spheric function model,LSF)和球冠谐函数模型(spheric cap harmonic model,SCHA),并利用数字测高仪和GPS实测数据对3个模型进行评估和比较。与数字测高仪数据的比较表明,3个模型能够较为准确地反映VTEC的变化趋势,证明了模型的有效性。与GPS实测数据的比较表明,3个模型中平均精度最高的是低阶球谐函数模型,其次是多项式模型,最后是球冠谐模型,其RMS和STD平均值依次为3.48 TECu、3.03 TECu、3.54 TECu、3.00TECu、3.82TECu、3.25TECu。利用GPS实测数据计算GIM(global ionospheric maps)模型的精度,结果显示,3个模型的BIAS均比GIM模型大,但是其RMS和STD小于GIM模型,显示了区域模型精度较高的稳定性。由各个模型与GIM模型的VTEC差值格网图可知,3个模型在建模区域的中部精度较高,多项式模型在边界有较明显的边际效应。展开更多
基金supported by National Key R&D Program of China (2016YFB0501503-3)the key project of National Natural Science Fund (41730108)the National Natural Science Fund (11103068)
文摘The Klobuchar model has been widely used to correct the ionospheric delay in applications. However, the NVTEC(Nighttime Vertical Total Electron Content) of the Klobuchar model employs an empirical constant of 9 TECU(Total Electron Content Unit) at L1 frequency. In this paper, the rationality and reliability of the nighttime constant setting are investigated using the GIM(Global Ionosphere Map) product of the IGS(International GNSS Service) from 1998 to 2015. Our study indicates that the suitable time span of NVTEC average in nighttime should be between 20:00 and 06:00 LT(local time). The NVTEC is highly correlated with seasons, having positive extremes in spring and autumn and negative extremes in summer through the mean values in all latitudes. In addition to seasonal dependence, solar activity in the solar cycle 23 strongly influences NVTEC as well and leads to its variation within a range between 25 and30 TECU in spring and autumn at solar maximum, which is about 1.5 times greater than that in summer and winter. The NVTEC also has a dependence on the latitude at solar maximum, with the mean value from 30 TECU in low latitudinal regions to 15 TECU in high latitudinal regions. Therefore, these results demonstrate that the nighttime VTEC has much greater deviations from the imperial constant in the Klobuchar model, and the newly estimated constant is expected to bring improvement to the predictability of the Klobuchar ionospheric delay model in nighttime.
文摘为了对区域电离层延迟进行实时模型化,利用中国区域GPS实测资料,基于球冠谐函数模型、低阶球谐函数模型、多项式模型和Kriging内插方法,构建了电离层延迟模型。重点讨论了电离层垂直总电子含量(vertical total electron content,VTEC)的空间变异性、相关性的统计计算和Kriging内插估计方法,实现了中国区域VTEC格网实时建模。验证结果表明,高纬度地区VTEC拟合精度优于低纬度地区,Kriging内插估计和多项式模型结果的拟合内符合精度明显优于球冠谐函数模型和低阶球谐函数模型。但多项式拟合的格网,其方差则存在明显的边际效应,拟合区域中央精度较高,区域边缘地带精度明显下降;Kriging算法估计的格网点VTEC方差更符合实际情况,穿刺点多的地方,格网点精度较高。
文摘多项式拟合建模方法常用于建立单站或小区域电离层VTEC(Vretical Total Electron Content)模型。由于电离层性质时刻变化,通常采用分段常数的方法分时段估计模型系数,各段模型系数不相关,时段间VTEC连续性无法保证。本文分别采用对拟合结果平滑和附加约束条件估计模型系数的方法改进分段模型时段间节点处不连续的不足,建立顾及时段间连续性的分段VTEC多项武模型,并利用实测BDS(Beidou Navigation Satellite System)观测数据求解单站VTEC。实验结果证明,对结果的平滑方法和附加约束条件系数估计方法均能实现VTEC序列时段节点连续,其中以模型展开点处拟合VTEC相等为连续性约束条件的系数估计方法效果最优,拟合VTEC与GIM(Global Ionosphere Map)参考值符合较好,拟合序列能较准确反映电离层变化规律。
文摘Since IGY (International Geophysical Year), through coordinated global observations, ionospheric research has been carried out by many countries. This effort primarily helped in the design and operation of HF radio wave communication systems. The Indian region covers a highly variable part of the equatorial electrojet and EIA (Equatorial Ionisation Anomaly) phenomena making its predictability difficult. With the advent of satellite communication and navigation, the need for accurate ionospheric TEC (Total Electron Content) models at global and regional scales has been stressed. The GAGAN (GPS Aided Geo Augmented Navigation) project jointly undertaken by the Indian Space Research Organisation (ISRO) and the Airport Authority of India (AAI) aims at effectively utilising the Global Navigational Satellite System (GNSS) to determine position coordinates accurately for aircraft precision landing applications. For this purpose the range errors are estimated by using a ground network of TEC stations spread over Indian region. The near simultaneous data collected from these dual frequency GPS stations can be used to generate the geo-referenced TEC values for various applications. The author has developed necessary algorithm and associated computer programmes for a real-time vertical TEC (VTEC) model based on TEC data collected from the GAGAN ground based network stations. The model has been tested and sample results presented here show that it adequately provides for the latitudinal resolution of 1° for the entire longitude span and also for two longitude blocks (73 - 83 & 83 - 93°E) separately. Cubic spline and bilinear interpolation techniques are used for filling up temporal and spatial data gaps. The model provides tabulated output of hourly average VTEC data with latitude for ready use, as well as graphical displays of VTEC maps and contours for monitoring purpose. The real-time model and its extensions are also being used for detailed scientific studies;examples of these show small day to day variability of VTEC without any change in solar activity and indication of the change in the shape of the VTEC diurnal curve with season. The present model will be used for further studies to derive the monthly average variation of the diurnal pattern and the relationship between VTEC peak amplitudes with changes in solar activity. The new information generated can be fed back to improve the real-time model so that eventually the dependence of such models on ground based network stations data can be minimised.