针对多自由度机械臂在采摘过程中出现的路径规划速度慢、路径成本高以及因视觉定位误差和机械臂关节位置误差引起的采摘失败问题,提出了结合视觉伺服的改进随机快速搜索树算法(Improved rapidly-exploring random trees with visual ser...针对多自由度机械臂在采摘过程中出现的路径规划速度慢、路径成本高以及因视觉定位误差和机械臂关节位置误差引起的采摘失败问题,提出了结合视觉伺服的改进随机快速搜索树算法(Improved rapidly-exploring random trees with visual servoing,VS-IRRT),具体包括改进RRT算法和基于平移控制器的视觉伺服方法。改进的RRT算法通过使用基于超椭球引力偏置的采样方法和密度减小策略,增加树拓展的目的性,减小了树的采样密度,提高路径规划效率;引入贪心思想和B样条曲线,剔除多余节点,对剩下折线进行平滑处理,优化路径在机械臂上的实施效果;结合基于平移控制器的视觉伺服控制,减小了定位误差对采摘过程的影响。使用Matlab分别对改进RRT算法和基于平移控制器的视觉伺服在二维和三维空间中进行仿真模拟试验,结果表明,改进的RRT算法的采样点数较RRT^(*)-connect算法减少92.9%,规划时间较RRT^(*)-connect算法减少86.1%,路径成本较RRT算法也减少35.2%。使用六自由度机械臂进行采摘试验,VS-IRRT算法的采摘速度比RRT^(*)-connect算法提升48.36%,路径成本相较RRT减少17.14%,采摘成功率提升2.1个百分点,所以在特定的采摘应用场景,尤其在农业采摘场景中,VS-IRRT算法能够提升机械臂采摘的综合性能。展开更多
Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power ...Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power quality classification techniques focused on single power quality events and did not include an optimal feature selection process. This paper presents a classification system that employs Wavelet Transform and the RMS profile to extract the main features of the measured waveforms containing either single or complex disturbances. A data mining process is designed to select the optimal set of features that better describes each disturbance present in the waveform. Support Vector Machine binary classifiers organized in a “One Vs Rest” architecture are individually optimized to classify single and complex disturbances. The parameters that rule the performance of each binary classifier are also individually adjusted using a grid search algorithm that helps them achieve optimal performance. This specialized process significantly improves the total classification accuracy. Several single and complex disturbances were simulated in order to train and test the algorithm. The results show that the classifier is capable of identifying >99% of single disturbances and >97% of complex disturbances.展开更多
文摘针对多自由度机械臂在采摘过程中出现的路径规划速度慢、路径成本高以及因视觉定位误差和机械臂关节位置误差引起的采摘失败问题,提出了结合视觉伺服的改进随机快速搜索树算法(Improved rapidly-exploring random trees with visual servoing,VS-IRRT),具体包括改进RRT算法和基于平移控制器的视觉伺服方法。改进的RRT算法通过使用基于超椭球引力偏置的采样方法和密度减小策略,增加树拓展的目的性,减小了树的采样密度,提高路径规划效率;引入贪心思想和B样条曲线,剔除多余节点,对剩下折线进行平滑处理,优化路径在机械臂上的实施效果;结合基于平移控制器的视觉伺服控制,减小了定位误差对采摘过程的影响。使用Matlab分别对改进RRT算法和基于平移控制器的视觉伺服在二维和三维空间中进行仿真模拟试验,结果表明,改进的RRT算法的采样点数较RRT^(*)-connect算法减少92.9%,规划时间较RRT^(*)-connect算法减少86.1%,路径成本较RRT算法也减少35.2%。使用六自由度机械臂进行采摘试验,VS-IRRT算法的采摘速度比RRT^(*)-connect算法提升48.36%,路径成本相较RRT减少17.14%,采摘成功率提升2.1个百分点,所以在特定的采摘应用场景,尤其在农业采摘场景中,VS-IRRT算法能够提升机械臂采摘的综合性能。
文摘Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power quality classification techniques focused on single power quality events and did not include an optimal feature selection process. This paper presents a classification system that employs Wavelet Transform and the RMS profile to extract the main features of the measured waveforms containing either single or complex disturbances. A data mining process is designed to select the optimal set of features that better describes each disturbance present in the waveform. Support Vector Machine binary classifiers organized in a “One Vs Rest” architecture are individually optimized to classify single and complex disturbances. The parameters that rule the performance of each binary classifier are also individually adjusted using a grid search algorithm that helps them achieve optimal performance. This specialized process significantly improves the total classification accuracy. Several single and complex disturbances were simulated in order to train and test the algorithm. The results show that the classifier is capable of identifying >99% of single disturbances and >97% of complex disturbances.