Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishe...Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution.展开更多
Earlier investigators have numerically carried out performance analysis of the invert trap fitted in an open channel using the stochastic discrete phase model(DPM) by assuming the open channel flow to be closed condui...Earlier investigators have numerically carried out performance analysis of the invert trap fitted in an open channel using the stochastic discrete phase model(DPM) by assuming the open channel flow to be closed conduit flow under pressure and assuming zero shear stress at the top wall.This is known as the fixed lid model.By assuming the top wall to be a shear free wall,they have been able to show that the velocity distribution looks similar to that of an open channel flow with zero velocity at the bottom and maximum velocity at the top,representing the free water surface,but no information has been provided for the pressure at the free water surface.Because of this assumption,the validation of the model in predicting the trap efficiency has performed significantly poorly.In addition,the free water surface subject to zero gauge pressure cannot be modeled using the fixed lid model because there is no provision of extra space in the form of air space for the fluctuating part of the water surface profile.It can.however,be modeled using the volume of fluid(VOF) model because the VOF model is the appropriate model for open channel or free surface flow.Therefore,in the present study,three-dimensional(3D) computational fluid dynamics(CFD) modeling with the VOF model,which considers open channel flow with a free water surface,along with the stochastic DPM.was used to model the trap efficiency of an invert trap fitted in an open rectangular channel.The governing mathematical flow equations of the VOF model were solved using the ANSYS Fluent 14.0 software,reproducing the experimental conditions exactly.The results show that the 3D CFD predictions using the VOF model closely fit the experimental data for glass bead particles.展开更多
The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow ...The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation.展开更多
针对复杂管道系统内水流冲击滞留气团现象,采用VOF模型(Volume of Fluid Model)进行了数值模拟计算,并与一维模型进行了比较计算分析,结果表明:系统的最大压力并不总是气团的最大压力,有可能还会叠加水体对管壁的撞击而形成的突然升高...针对复杂管道系统内水流冲击滞留气团现象,采用VOF模型(Volume of Fluid Model)进行了数值模拟计算,并与一维模型进行了比较计算分析,结果表明:系统的最大压力并不总是气团的最大压力,有可能还会叠加水体对管壁的撞击而形成的突然升高压力。与实验实测结果的比较分析表明:采用VOF模型,能够较精细地仿真水流冲击滞留气团现象的气团形态、流场结构以及压力分布等的变化过程,其压力数值计算结果与实验实测基本吻合,其计算误差明显小于现有一维模型的计算误差,是深入研究该复杂瞬变流现象的有效方法。展开更多
基于流体体积函数法(volume of fluid,VOF)建立垂直平行平板通道内膜状冷凝传热预测数值模型,膜状冷凝传热传质过程模拟通过在VOF模型守恒方程中施加基于界面能量平衡方法的源项实现。通过数值分析研究发现,在壁面的顶部,冷凝液膜最薄,...基于流体体积函数法(volume of fluid,VOF)建立垂直平行平板通道内膜状冷凝传热预测数值模型,膜状冷凝传热传质过程模拟通过在VOF模型守恒方程中施加基于界面能量平衡方法的源项实现。通过数值分析研究发现,在壁面的顶部,冷凝液膜最薄,存在层流区域;冷凝液向下流动,一系列不规则的波纹随之出现;影响冷凝传热的主要因素是蒸汽的流速、液膜厚度及流动状态等。展开更多
基金funded by the National Key R&D Program of China,China(Grant No.2023YFB4005500)National Natural Science Foundation of China,China(Grant Nos.52379113 and 52379114).
文摘Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution.
文摘Earlier investigators have numerically carried out performance analysis of the invert trap fitted in an open channel using the stochastic discrete phase model(DPM) by assuming the open channel flow to be closed conduit flow under pressure and assuming zero shear stress at the top wall.This is known as the fixed lid model.By assuming the top wall to be a shear free wall,they have been able to show that the velocity distribution looks similar to that of an open channel flow with zero velocity at the bottom and maximum velocity at the top,representing the free water surface,but no information has been provided for the pressure at the free water surface.Because of this assumption,the validation of the model in predicting the trap efficiency has performed significantly poorly.In addition,the free water surface subject to zero gauge pressure cannot be modeled using the fixed lid model because there is no provision of extra space in the form of air space for the fluctuating part of the water surface profile.It can.however,be modeled using the volume of fluid(VOF) model because the VOF model is the appropriate model for open channel or free surface flow.Therefore,in the present study,three-dimensional(3D) computational fluid dynamics(CFD) modeling with the VOF model,which considers open channel flow with a free water surface,along with the stochastic DPM.was used to model the trap efficiency of an invert trap fitted in an open rectangular channel.The governing mathematical flow equations of the VOF model were solved using the ANSYS Fluent 14.0 software,reproducing the experimental conditions exactly.The results show that the 3D CFD predictions using the VOF model closely fit the experimental data for glass bead particles.
基金the National Natural Science Foundation of China(Nos.51974065 and 52274257)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMMKJSKL-2020-13)the Fundamental Research Funds for the Central Universities(Nos.N2201008 and N2201004).
文摘The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation.
文摘针对复杂管道系统内水流冲击滞留气团现象,采用VOF模型(Volume of Fluid Model)进行了数值模拟计算,并与一维模型进行了比较计算分析,结果表明:系统的最大压力并不总是气团的最大压力,有可能还会叠加水体对管壁的撞击而形成的突然升高压力。与实验实测结果的比较分析表明:采用VOF模型,能够较精细地仿真水流冲击滞留气团现象的气团形态、流场结构以及压力分布等的变化过程,其压力数值计算结果与实验实测基本吻合,其计算误差明显小于现有一维模型的计算误差,是深入研究该复杂瞬变流现象的有效方法。
文摘基于流体体积函数法(volume of fluid,VOF)建立垂直平行平板通道内膜状冷凝传热预测数值模型,膜状冷凝传热传质过程模拟通过在VOF模型守恒方程中施加基于界面能量平衡方法的源项实现。通过数值分析研究发现,在壁面的顶部,冷凝液膜最薄,存在层流区域;冷凝液向下流动,一系列不规则的波纹随之出现;影响冷凝传热的主要因素是蒸汽的流速、液膜厚度及流动状态等。