Yutu is the first lunar rover after the Apollo program and Luna missions. One of the payloads on the Yutu rover, the Visible and Near-infrared Imaging Spectrometer (VNIS), has acquired four VIS/NIR images and SWIR s...Yutu is the first lunar rover after the Apollo program and Luna missions. One of the payloads on the Yutu rover, the Visible and Near-infrared Imaging Spectrometer (VNIS), has acquired four VIS/NIR images and SWIR spectra near its landing site in Mare Imbrium. The radiance images were reduced through repairing bad lines and bad points, and applying flat field correction, and then were converted into reflectance values based on the solar irradiance and angles of incidence. A significant shadow effect was observed in the VIS/NIR image. The shadowed regions show lower reflectance with a darkening trend compared with illuminated regions. The re- flectance increased by up to 24% for entire images and 17% for the VIS/NIR-SWlR overlapping regions after shadow correction. The correction for the shadow effect will remarkably decrease the estimate of FeO content, by up to 4.9 wt.% in this study. The derived FeO contents of CD-005-008 after shadow correction are around 18.0 wt.%.展开更多
The Chang'e-3 Visible and Near-infrared Imaging Spectrometer (VNIS) is one of the four payloads on the Yutu rover. After traversing the landing site during the first two lunar days, four different areas are detecte...The Chang'e-3 Visible and Near-infrared Imaging Spectrometer (VNIS) is one of the four payloads on the Yutu rover. After traversing the landing site during the first two lunar days, four different areas are detected, and Level 2A and 2B ra- diance data have been released to the scientific community. The released data have been processed by dark current subtraction, correction for the effect of temperature, radiometric calibration and geometric calibration. We emphasize approaches for re- flectance analysis and mineral identification for in-situ analysis with VNIS. Then the preliminary spectral and mineralogical results from the landing site are derived. After comparing spectral data from VNIS with data collected by the Ma instrument and samples of mare that were returned from the Apollo program, all the reflectance data have been found to have similar absorption features near 1000 nm except lunar sample 71061. In addition, there is also a weak absorption feature between 1750-2400nm on VNIS, but the slopes of VNIS and Ma reflectance at longer wavelengths are lower than data taken from samples of lunar mare. Spectral parameters such as Band Centers and Integrated Band Depth Ratios are used to analyze mineralogical features. The results show that detection points E and N205 are mixtures of high-Ca pyroxene and olivine, and the composition of olivineat point N205 is higher than that at point E, but the compositions of detection points S3 and N203 are mainly olivine-rich. Since there are no obvious absorption features near 1250 nm, plagioclase is not directly identified at the landing site.展开更多
The second phase of the Chang'E Program (also named Chang'E-3) has the goal to land and perform in-situ detection on the lunar surface. A VIS/NIR imaging spectrometer (VNIS) will be carded on the Chang'E-3 luna...The second phase of the Chang'E Program (also named Chang'E-3) has the goal to land and perform in-situ detection on the lunar surface. A VIS/NIR imaging spectrometer (VNIS) will be carded on the Chang'E-3 lunar rover to detect the distri-bution of lunar minerals and resources. VNIS is the first mission in history to perform in-situ spectral measurement on the surface of the Moon, the reflectance data of which are fundamental for interpretation of lunar composition, whose quality would greatly affect the accuracy of lunar element and mineral determination. Until now, in-situ de-tection by imaging spectrometers was only performed by rovers on Mars. We firstly review reflectance conversion methods for rovers on Mars (Viking landers, Pathfinder and Mars Exploration rovers, etc). Secondly, we discuss whether these conversion methods used on Mars can be applied to lunar in-situ detection. We also applied data from a laboratory bidirectional reflectance distribution function (BRDF) using simu- lated lunar soil to test the availability of this method. Finally, we modify reflectance conversion methods used on Mars by considering differences between environments on the Moon and Mars and apply the methods to experimental data obtained from the ground validation of VNIS. These results were obtained by comparing reflectance data from the VNIS measured in the laboratory with those from a standard spectrometer obtained at the same time and under the same observing conditions. The shape and amplitude of the spectrum fits well, and the spectral uncertainty parameters for most samples are within 8%, except for the ilmenite sample which has a low albedo. In conclusion, our reflectance conversion method is suitable for lunar in-situ detection.展开更多
基金supported by the Chinese Academy of Sciences (KGZD-EW-603)the National Natural Science Foundation of China (Grant No. 41103031)
文摘Yutu is the first lunar rover after the Apollo program and Luna missions. One of the payloads on the Yutu rover, the Visible and Near-infrared Imaging Spectrometer (VNIS), has acquired four VIS/NIR images and SWIR spectra near its landing site in Mare Imbrium. The radiance images were reduced through repairing bad lines and bad points, and applying flat field correction, and then were converted into reflectance values based on the solar irradiance and angles of incidence. A significant shadow effect was observed in the VIS/NIR image. The shadowed regions show lower reflectance with a darkening trend compared with illuminated regions. The re- flectance increased by up to 24% for entire images and 17% for the VIS/NIR-SWlR overlapping regions after shadow correction. The correction for the shadow effect will remarkably decrease the estimate of FeO content, by up to 4.9 wt.% in this study. The derived FeO contents of CD-005-008 after shadow correction are around 18.0 wt.%.
基金Supported by the National Natural Science Foundation of China
文摘The Chang'e-3 Visible and Near-infrared Imaging Spectrometer (VNIS) is one of the four payloads on the Yutu rover. After traversing the landing site during the first two lunar days, four different areas are detected, and Level 2A and 2B ra- diance data have been released to the scientific community. The released data have been processed by dark current subtraction, correction for the effect of temperature, radiometric calibration and geometric calibration. We emphasize approaches for re- flectance analysis and mineral identification for in-situ analysis with VNIS. Then the preliminary spectral and mineralogical results from the landing site are derived. After comparing spectral data from VNIS with data collected by the Ma instrument and samples of mare that were returned from the Apollo program, all the reflectance data have been found to have similar absorption features near 1000 nm except lunar sample 71061. In addition, there is also a weak absorption feature between 1750-2400nm on VNIS, but the slopes of VNIS and Ma reflectance at longer wavelengths are lower than data taken from samples of lunar mare. Spectral parameters such as Band Centers and Integrated Band Depth Ratios are used to analyze mineralogical features. The results show that detection points E and N205 are mixtures of high-Ca pyroxene and olivine, and the composition of olivineat point N205 is higher than that at point E, but the compositions of detection points S3 and N203 are mainly olivine-rich. Since there are no obvious absorption features near 1250 nm, plagioclase is not directly identified at the landing site.
基金supported by the Chang’E Program of China (No.TY3Q20110029)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KGCX2-EW-402)the National Natural Science Foundation of China(Grant Nos. 11003012 and U1231103)
文摘The second phase of the Chang'E Program (also named Chang'E-3) has the goal to land and perform in-situ detection on the lunar surface. A VIS/NIR imaging spectrometer (VNIS) will be carded on the Chang'E-3 lunar rover to detect the distri-bution of lunar minerals and resources. VNIS is the first mission in history to perform in-situ spectral measurement on the surface of the Moon, the reflectance data of which are fundamental for interpretation of lunar composition, whose quality would greatly affect the accuracy of lunar element and mineral determination. Until now, in-situ de-tection by imaging spectrometers was only performed by rovers on Mars. We firstly review reflectance conversion methods for rovers on Mars (Viking landers, Pathfinder and Mars Exploration rovers, etc). Secondly, we discuss whether these conversion methods used on Mars can be applied to lunar in-situ detection. We also applied data from a laboratory bidirectional reflectance distribution function (BRDF) using simu- lated lunar soil to test the availability of this method. Finally, we modify reflectance conversion methods used on Mars by considering differences between environments on the Moon and Mars and apply the methods to experimental data obtained from the ground validation of VNIS. These results were obtained by comparing reflectance data from the VNIS measured in the laboratory with those from a standard spectrometer obtained at the same time and under the same observing conditions. The shape and amplitude of the spectrum fits well, and the spectral uncertainty parameters for most samples are within 8%, except for the ilmenite sample which has a low albedo. In conclusion, our reflectance conversion method is suitable for lunar in-situ detection.