Mitigating vortex-induced vibrations(VIV)in flexible risers represents a critical concern in offshore oil and gas production,considering its potential impact on operational safety and efficiency.The accurate predictio...Mitigating vortex-induced vibrations(VIV)in flexible risers represents a critical concern in offshore oil and gas production,considering its potential impact on operational safety and efficiency.The accurate prediction of displacement and position of VIV in flexible risers remains challenging under actual marine conditions.This study presents a data-driven model for riser displacement prediction that corresponds to field conditions.Experimental data analysis reveals that the XGBoost algorithm predicts the maximum displacement and position with superior accuracy compared with Support vector regression(SVR),considering both computational efficiency and precision.Platform displacement in the Y-direction demonstrates a significant positive correlation with both axial depth and maximum displacement magnitude.The fourth point displacement exhibits the highest contribution to model prediction outcomes,showing a positive influence on maximum displacement while negatively affecting the axial depth of maximum displacement.Platform displacement in the X-and Y-directions exhibits competitive effects on both the riser’s maximum displacement and its axial depth.Through the implementation of XGBoost algorithm and SHapley Additive exPlanation(SHAP)analysis,the model effectively estimates the riser’s maximum displacement and its precise location.This data-driven approach achieves predictions using minimal,readily available data points,enhancing its practical field applications and demonstrating clear relevance to academic and professional communities.展开更多
A deep-sea mining riser is a crucial component of the system used to lift seafloor mineral resources to the vessel.It is prone to damage and failure because of harsh environmental conditions and internal fluid erosion...A deep-sea mining riser is a crucial component of the system used to lift seafloor mineral resources to the vessel.It is prone to damage and failure because of harsh environmental conditions and internal fluid erosion.Furthermore,damage can impact the response characteristics of the riser,but varying environmental loadings easily mask it.Thus,distin-guishing between riser damage and environmental effects poses a considerable challenge.To address this issue,a cantilevered model is created for a deep-sea mining riser via the concentrated mass method,and a time-domain analytical strategy is developed.The vortex-induced vibration(VIV)response characteristics of the riser are initially examined,considering various damage conditions and flow velocities.The study results revealed four primary observations:(a)effective tension can serve as a reliable indicator for identifying damage at lower velocities;(b)there are noticeable differences in displacement between the healthy and damaged risers in the in-line direction rather than the cross-flow direction;(c)frequency characteristics can more effectively distinguish the damage conditions at high flow velocities,with the mean square frequency and frequency variance being more effective than the centroid frequency and root variance frequency;(d)displacement differences are more sensitive to damage occurring near the top and bottom of the riser,while both velocity variations and structural damage can influence displacements,especially in regions between modal nodes.The vibrational behavior and damage indicators are clarified for structural health monitoring of deep-sea mining risers during lifting operations.展开更多
Deepwater drilling riser is the key equipment connecting the subsea wellhead and floating drilling platform.Due to complex marine environment,vortex-induced vibration(ViV)will be generated on riser,which will induce f...Deepwater drilling riser is the key equipment connecting the subsea wellhead and floating drilling platform.Due to complex marine environment,vortex-induced vibration(ViV)will be generated on riser,which will induce fatigue failure and even cause unpredictable drilling accidents.Therefore,it is important to study the ViV characteristics of deepwater drilling riser and reveal the main controlling factors for ensuring the safe and efficient operation of deepwater drilling engineering.In this paper,the ViV of deepwater drilling riser is numerically simulated in time domain based on the discrete vortex method(DvM).A hydrodynamic analysis model and governing equation of VIV is proposed with considering the effect of riser motion using DVM and slice method,where the governing equation is solved by Runge-Kutta method.Model validation is performed,which verified the correctness and accuracy of the mechanical model and the solution method.On this basis,the influence of the number of control points,current velocity,riser outer diameter,shear flow and top tension on the ViV characteristics of deepwater drilling risers are discussed in detail.The results show that with the increase of current velocity,the vibration amplitude of deepwater drilling riser decreases obviously,while the vibration frequency increases gradually.However,if the outer diameter of riser increases,the vibration amplitude increases,while the vibration frequency decreases gradually.The top tension also has great influence on the VIV of riser.When the top tension is 1.25 G,the VIV is suppressed to a certain extent.This study has guiding significance for optimal design and engineering control of deepwater drilling riser.展开更多
A new piezoelectric energy harvester is proposed which employs the coupling effect between a piezoelectric beam and an elastic-supported sphere to capture wind energy from multiple directions.As wind flows across the ...A new piezoelectric energy harvester is proposed which employs the coupling effect between a piezoelectric beam and an elastic-supported sphere to capture wind energy from multiple directions.As wind flows across the sphere,it induces vortical vibrations that transfer to the piezoelectric beam,converting wind energy into electricity.A nonlinear coupled dynamic theoretical model based on the Euler-Lagrange equation is developed to study the interactions between the sphere and beam vibrations.The vortex-induced force acting on the sphere is determined,and the dynamic model of the coupled system is validated through experiments.The results show that in order to reach convergence,at least four modes are required in the Galerkin discretization.Moreover,the output performance of the energy harvester strongly depends on the frequency ratio between the sphere and the piezoelectric beam.We find that at a frequency ratio of approximately 1.34,the harvester achieves a maximum average power of 190μW at a wind speed of 3.90 m/s,with the lock-in region between 2.63 and 5.30 m/s.Subsequently,the impact of wind flow direction on the electrical performance of the energy harvester is investigated in a wind tunnel,by adjusting the angle between the harvester and incoming flows ranging from 0°to 360°.The findings indicate that the harvester maintains strong and consistent performance across variable wind flow directions and speeds.Particularly within the lock-in region,the output voltage fluctuations are below 5.5%,showcasing the robustness of the design.This result points to the potential utility of this novel harvester in complex environments.Our study also provides a theoretical basis for the development of small-scale offshore wind energy harvesting technologies.展开更多
Installing the splitter plates is a passive aerodynamic solution for eliminating vortex-induced vibration (VIV). However, the influences of splitter plates on the VIV and aerostatic performances are more complicated d...Installing the splitter plates is a passive aerodynamic solution for eliminating vortex-induced vibration (VIV). However, the influences of splitter plates on the VIV and aerostatic performances are more complicated due to aerodynamic interference between highway and railway decks. To study the effects of splitter plates, wind tunnel experiments for measuring VIV and aerostatic forces of twin decks under two opposite flow directions were conducted, while the surrounding flow and wind pressure of static twin decks with and without splitter plates are numerically simulated. The results showed that the incoming flow direction affects the VIV response and aerostatic coefficients. The highway deck has poor vertical and torsional VIV, and the VIV region and amplitude are different under different directions. While the railway deck only has vertical VIV when located upstream. The splitter plates can impede the process of vortex generation, shedding and impinging at the gap between twin deck, and significantly reducing the surface fluctuating pressure coefficient, thus effectively suppressing the VIV of twin decks. While, the splitter plates hurt the upstream deck regarding static wind stability and have little effect on the downstream deck. The splitter plates of appropriate width are recommended to improve VIV performances in twin parallel bridges.展开更多
Optimizing wind energy harvesting performance remains a significant challenge.Machine learning(ML)offers a promising approach for addressing this challenge.This study proposes an ML-based approach using the radial bas...Optimizing wind energy harvesting performance remains a significant challenge.Machine learning(ML)offers a promising approach for addressing this challenge.This study proposes an ML-based approach using the radial basis function neural network(RBFNN)and differential evolution(DE)to predict and optimize the structural parameters(the diameter of the spherical bluff body D,the total spring stiffness k,and the length of the piezoelectric cantilever beam L)of the wind energy harvester(WEH).The RBFNN model is trained with theoretical data and validated with wind tunnel experimental results,achieving the coefficient-of-determination scores R2of 97.8%and 90.3%for predicting the average output power Pavgand aero-electro-mechanical efficiencyηaem,respectively.The DE algorithm is used to identify the optimal parameter combinations for wind speeds U ranging from 2.5 m/s to 6.5 m/s.The maximum Pavgis achieved when D=57.5 mm,k=28.8 N/m,L=112.1 mm,and U=4.6 m/s,while the maximumηaemis achieved when D=52.7 mm,k=29.2 N/m,L=89.2 mm,and U=4.7 m/s.Compared with that of the non-optimized structure,the WEH performance is improved by 28.6%in P_(avg)and 19.1%inη_(aem).展开更多
During the operation and installation of offshore pipelines, high axial forces and pressures are experienced, and their effects cannot be neglected. In this article, the effect of internal flow velocity and functional...During the operation and installation of offshore pipelines, high axial forces and pressures are experienced, and their effects cannot be neglected. In this article, the effect of internal flow velocity and functional loads on vortex-induced vibration (VIV) response is investigated. On the basis of the Hamilton principle, a differential equation was derived to describe the motion of a pinned-pinned tensioned spanning pipeline conveying fluid. The VIV response was calculated according to DNV-RP-F105 under different functional loads. The results showed that functional loads influence free spanning pipeline VIV response by changing the natural frequency. Internal flow velocity was found less important for VIV response than other functional load factors, such as effective axial force, because the speed in reality is not high enough to be significant. The research may provide a reference for sensitivity studies of the effect of functional loads on allowable free span lengths.展开更多
基金The research work was financially supported by the National Natural Science Foundation of China(Grant Nos.51979238 and 52301338)the Sichuan Science and Technology Program(Grant Nos.2023NSFSC1953 and 2023ZYD0140).
文摘Mitigating vortex-induced vibrations(VIV)in flexible risers represents a critical concern in offshore oil and gas production,considering its potential impact on operational safety and efficiency.The accurate prediction of displacement and position of VIV in flexible risers remains challenging under actual marine conditions.This study presents a data-driven model for riser displacement prediction that corresponds to field conditions.Experimental data analysis reveals that the XGBoost algorithm predicts the maximum displacement and position with superior accuracy compared with Support vector regression(SVR),considering both computational efficiency and precision.Platform displacement in the Y-direction demonstrates a significant positive correlation with both axial depth and maximum displacement magnitude.The fourth point displacement exhibits the highest contribution to model prediction outcomes,showing a positive influence on maximum displacement while negatively affecting the axial depth of maximum displacement.Platform displacement in the X-and Y-directions exhibits competitive effects on both the riser’s maximum displacement and its axial depth.Through the implementation of XGBoost algorithm and SHapley Additive exPlanation(SHAP)analysis,the model effectively estimates the riser’s maximum displacement and its precise location.This data-driven approach achieves predictions using minimal,readily available data points,enhancing its practical field applications and demonstrating clear relevance to academic and professional communities.
基金financially supported by the National Key Research and Development Program of China(Grant No.2023YFC2811600)the National Natural Science Foundation of China(Grant Nos.52301349 and 52088102)+1 种基金the Qingdao Post-Doctorate Science Fund(No.QDBSH20220202070)the Major Scientific and Technological Innovation Project of Shandong Province(Grant No.2019JZZY010820).
文摘A deep-sea mining riser is a crucial component of the system used to lift seafloor mineral resources to the vessel.It is prone to damage and failure because of harsh environmental conditions and internal fluid erosion.Furthermore,damage can impact the response characteristics of the riser,but varying environmental loadings easily mask it.Thus,distin-guishing between riser damage and environmental effects poses a considerable challenge.To address this issue,a cantilevered model is created for a deep-sea mining riser via the concentrated mass method,and a time-domain analytical strategy is developed.The vortex-induced vibration(VIV)response characteristics of the riser are initially examined,considering various damage conditions and flow velocities.The study results revealed four primary observations:(a)effective tension can serve as a reliable indicator for identifying damage at lower velocities;(b)there are noticeable differences in displacement between the healthy and damaged risers in the in-line direction rather than the cross-flow direction;(c)frequency characteristics can more effectively distinguish the damage conditions at high flow velocities,with the mean square frequency and frequency variance being more effective than the centroid frequency and root variance frequency;(d)displacement differences are more sensitive to damage occurring near the top and bottom of the riser,while both velocity variations and structural damage can influence displacements,especially in regions between modal nodes.The vibrational behavior and damage indicators are clarified for structural health monitoring of deep-sea mining risers during lifting operations.
基金the financial support from National Key R&D Program of China(Grant number:2024YFC2815100)Natural Science Foundation of China(Grant number:52322110)Beijing Nova Program(Grant number:20230484341).
文摘Deepwater drilling riser is the key equipment connecting the subsea wellhead and floating drilling platform.Due to complex marine environment,vortex-induced vibration(ViV)will be generated on riser,which will induce fatigue failure and even cause unpredictable drilling accidents.Therefore,it is important to study the ViV characteristics of deepwater drilling riser and reveal the main controlling factors for ensuring the safe and efficient operation of deepwater drilling engineering.In this paper,the ViV of deepwater drilling riser is numerically simulated in time domain based on the discrete vortex method(DvM).A hydrodynamic analysis model and governing equation of VIV is proposed with considering the effect of riser motion using DVM and slice method,where the governing equation is solved by Runge-Kutta method.Model validation is performed,which verified the correctness and accuracy of the mechanical model and the solution method.On this basis,the influence of the number of control points,current velocity,riser outer diameter,shear flow and top tension on the ViV characteristics of deepwater drilling risers are discussed in detail.The results show that with the increase of current velocity,the vibration amplitude of deepwater drilling riser decreases obviously,while the vibration frequency increases gradually.However,if the outer diameter of riser increases,the vibration amplitude increases,while the vibration frequency decreases gradually.The top tension also has great influence on the VIV of riser.When the top tension is 1.25 G,the VIV is suppressed to a certain extent.This study has guiding significance for optimal design and engineering control of deepwater drilling riser.
基金supported by the National Key R&D Program of China(No.2021YFF0501001)the National Natural Science Foundation of China(Nos.52308315,51922046,and 52192661)+4 种基金the Research Funds of Huazhong University of Science and Technology(No.2023JCYJ014)the China Postdoctoral Science Foundation(No.2023M731206)the Research Funds of China Railway Siyuan Survey and Design Group Co.,Ltd.(Nos.KY2023014S,KY2023126S,2021K085,2020K006,and 2020K172)the Research Fund of China Construction Science and Industry(No.CSCEC-PT-004-2022-KT-3.3)the Autonomous Innovation Fund of Hubei Province(No.5003242027),China.
文摘A new piezoelectric energy harvester is proposed which employs the coupling effect between a piezoelectric beam and an elastic-supported sphere to capture wind energy from multiple directions.As wind flows across the sphere,it induces vortical vibrations that transfer to the piezoelectric beam,converting wind energy into electricity.A nonlinear coupled dynamic theoretical model based on the Euler-Lagrange equation is developed to study the interactions between the sphere and beam vibrations.The vortex-induced force acting on the sphere is determined,and the dynamic model of the coupled system is validated through experiments.The results show that in order to reach convergence,at least four modes are required in the Galerkin discretization.Moreover,the output performance of the energy harvester strongly depends on the frequency ratio between the sphere and the piezoelectric beam.We find that at a frequency ratio of approximately 1.34,the harvester achieves a maximum average power of 190μW at a wind speed of 3.90 m/s,with the lock-in region between 2.63 and 5.30 m/s.Subsequently,the impact of wind flow direction on the electrical performance of the energy harvester is investigated in a wind tunnel,by adjusting the angle between the harvester and incoming flows ranging from 0°to 360°.The findings indicate that the harvester maintains strong and consistent performance across variable wind flow directions and speeds.Particularly within the lock-in region,the output voltage fluctuations are below 5.5%,showcasing the robustness of the design.This result points to the potential utility of this novel harvester in complex environments.Our study also provides a theoretical basis for the development of small-scale offshore wind energy harvesting technologies.
基金Projects(51925808,52078504,51822803) supported by the National Natural Science Foundation of ChinaProject(2022JJ10082) supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(N2022Z004) supported by the Research on Technology Development Trend and Key Common Problems in Railway,ChinaProject(Xplorer Prize 2021) supported by the Tencent Foundation,China。
文摘Installing the splitter plates is a passive aerodynamic solution for eliminating vortex-induced vibration (VIV). However, the influences of splitter plates on the VIV and aerostatic performances are more complicated due to aerodynamic interference between highway and railway decks. To study the effects of splitter plates, wind tunnel experiments for measuring VIV and aerostatic forces of twin decks under two opposite flow directions were conducted, while the surrounding flow and wind pressure of static twin decks with and without splitter plates are numerically simulated. The results showed that the incoming flow direction affects the VIV response and aerostatic coefficients. The highway deck has poor vertical and torsional VIV, and the VIV region and amplitude are different under different directions. While the railway deck only has vertical VIV when located upstream. The splitter plates can impede the process of vortex generation, shedding and impinging at the gap between twin deck, and significantly reducing the surface fluctuating pressure coefficient, thus effectively suppressing the VIV of twin decks. While, the splitter plates hurt the upstream deck regarding static wind stability and have little effect on the downstream deck. The splitter plates of appropriate width are recommended to improve VIV performances in twin parallel bridges.
基金Project supported by the National Key R&D Program of China(No.2021YFF0501001)the National Natural Science Foundation of China(Nos.52308315,51922046,and 52192661)+3 种基金the Research Funds of Huazhong University of Science and Technology(No.2023JCYJ014)the China Postdoctoral Science Foundation(No.2023M731206)the Research Funds of China Railway Siyuan Survey and Design Group Co.Ltd.(Nos.KY2023014S,KY2023126S,2021K085,2020K006,and 2020K172)the Autonomous Innovation Fund of Hubei Province of China(No.5003242027)。
文摘Optimizing wind energy harvesting performance remains a significant challenge.Machine learning(ML)offers a promising approach for addressing this challenge.This study proposes an ML-based approach using the radial basis function neural network(RBFNN)and differential evolution(DE)to predict and optimize the structural parameters(the diameter of the spherical bluff body D,the total spring stiffness k,and the length of the piezoelectric cantilever beam L)of the wind energy harvester(WEH).The RBFNN model is trained with theoretical data and validated with wind tunnel experimental results,achieving the coefficient-of-determination scores R2of 97.8%and 90.3%for predicting the average output power Pavgand aero-electro-mechanical efficiencyηaem,respectively.The DE algorithm is used to identify the optimal parameter combinations for wind speeds U ranging from 2.5 m/s to 6.5 m/s.The maximum Pavgis achieved when D=57.5 mm,k=28.8 N/m,L=112.1 mm,and U=4.6 m/s,while the maximumηaemis achieved when D=52.7 mm,k=29.2 N/m,L=89.2 mm,and U=4.7 m/s.Compared with that of the non-optimized structure,the WEH performance is improved by 28.6%in P_(avg)and 19.1%inη_(aem).
基金Supported by the National Natural Science Foundation of China (No. 50879013)China National 111 Project (No.B07019)
文摘During the operation and installation of offshore pipelines, high axial forces and pressures are experienced, and their effects cannot be neglected. In this article, the effect of internal flow velocity and functional loads on vortex-induced vibration (VIV) response is investigated. On the basis of the Hamilton principle, a differential equation was derived to describe the motion of a pinned-pinned tensioned spanning pipeline conveying fluid. The VIV response was calculated according to DNV-RP-F105 under different functional loads. The results showed that functional loads influence free spanning pipeline VIV response by changing the natural frequency. Internal flow velocity was found less important for VIV response than other functional load factors, such as effective axial force, because the speed in reality is not high enough to be significant. The research may provide a reference for sensitivity studies of the effect of functional loads on allowable free span lengths.