This paper investigates the maximum principle for viscosity solutions of fully nonlinear, second order parabolic, possibly degenerate partial differential equations. Using this maximum principle the anthor prove that ...This paper investigates the maximum principle for viscosity solutions of fully nonlinear, second order parabolic, possibly degenerate partial differential equations. Using this maximum principle the anthor prove that viscosity solutions of initial and bo unoary value problem for parabolic equations are unique.展开更多
In order to visualize the 3-D field of explosion and describe the complex physical phenomena of explosion, the 3-D data resulting from numerical simulation by 3-D multi-material in cell (MMIC), and the application of ...In order to visualize the 3-D field of explosion and describe the complex physical phenomena of explosion, the 3-D data resulting from numerical simulation by 3-D multi-material in cell (MMIC), and the application of volume visualization is explored, based on the characteristics of explosion and shock. Based on this, a visualization system for 3-D explosion--ViSC3D is designed. Approaches for the visualization of 3-D field of explosion are presented. The algorithm and the functions of ViSC3D are also presented. ViSC3D is thus a useful tool to observe and analyze either the full picture or the details of a 3-D field of explosion, that are difficult to observe and analyze directly. With ViSC3D, the field of explosion between the hill slopes is visualized. The cutaway views and 2-D slices are also given. The full picture and partial details of 3-D field of explosion can be observed clearly. Furthermore, ViSC3D can be used to visualize other similar 3-D data fields.展开更多
基金This work is supported by the National Natural Science Foundation of China
文摘This paper investigates the maximum principle for viscosity solutions of fully nonlinear, second order parabolic, possibly degenerate partial differential equations. Using this maximum principle the anthor prove that viscosity solutions of initial and bo unoary value problem for parabolic equations are unique.
文摘In order to visualize the 3-D field of explosion and describe the complex physical phenomena of explosion, the 3-D data resulting from numerical simulation by 3-D multi-material in cell (MMIC), and the application of volume visualization is explored, based on the characteristics of explosion and shock. Based on this, a visualization system for 3-D explosion--ViSC3D is designed. Approaches for the visualization of 3-D field of explosion are presented. The algorithm and the functions of ViSC3D are also presented. ViSC3D is thus a useful tool to observe and analyze either the full picture or the details of a 3-D field of explosion, that are difficult to observe and analyze directly. With ViSC3D, the field of explosion between the hill slopes is visualized. The cutaway views and 2-D slices are also given. The full picture and partial details of 3-D field of explosion can be observed clearly. Furthermore, ViSC3D can be used to visualize other similar 3-D data fields.