For internal combustion engines,engines installed for transport ships,cargo ships,and fishing vessels are mainly diesel engines.The number of engines is increasing due to the development of the maritime and seafood ex...For internal combustion engines,engines installed for transport ships,cargo ships,and fishing vessels are mainly diesel engines.The number of engines is increasing due to the development of the maritime and seafood exploitation sectors.Therefore,the high demand for petroleum fuels increases environmental pollution due to engine emissions.Reducing environmental pollution from the combustion of petroleum fuels has become a concern worldwide,especially for internal combustion engines.The exhaust gases from the engine contain harmful substances such as soot and nitrogen oxides(NO_(x)).Fuels with higher carbon content generate more soot when burned.In contrast,biofuels have low carbon and sulfur content and supply ample oxygen,which helps to reduce soot formation.For these reasons,biofuels are encouraged as alternative fuels to petroleum.Vegetable oil is one of the primary raw materials for biofuel production.This study presents a mixture of diesel and vegetable oil utilized as fuel for fishing vessels’diesel engines.The results of experimental research on a fishing vessel’s 4CHE Yanmar diesel engine when using diesel fuel mixed with coconut oil(B15,15%coconut oil,and 85%diesel)show that increasing B15 fuel injection pressure by about 10–15%compared with diesel fuel injection pressure reduces the engine’s soot emissions and increases power compared to unadjusted.This solution contributes to reducing environmental pollution from engine emissions.展开更多
Oil blending is the method of choice used worldwide to improve oxidative stability and nutritional value.There is no such edible oil/fat that meets all the recommendations from the health point of view.The fatty acid ...Oil blending is the method of choice used worldwide to improve oxidative stability and nutritional value.There is no such edible oil/fat that meets all the recommendations from the health point of view.The fatty acid composition of vegetable oils decides the fate of the oil.Pure single oil is unable to provide a balanced amount of fatty acids(FAs)required/recommended on a daily intake basis.Blending oils/fats is an appropriate procedure of physically mixing multiple oils in suitable proportions which may provide functional lipids with improved antioxidant potential and desirable physical and chemical properties.This review piled up the accessible data on the blending of diverse oils/fats in the combination of binary,ternary,quaternary,or other types of oils into a single blended oil.Blending can be found very convincing towards appropriate FA profile,enhancement in physicochemical characteristics,and augmented stability for the period of storage or when used as cooking/frying processes which could ultimately serve as an effectual dietary intervention towards the health protectiveness.展开更多
Vegetable oils are a source of energy, essential fatty acids, antioxidants and fat-soluble vitamins useful for human health care and development. These oils also contribute to organoleptic quality of their products’ ...Vegetable oils are a source of energy, essential fatty acids, antioxidants and fat-soluble vitamins useful for human health care and development. These oils also contribute to organoleptic quality of their products’ derivatives. However, their chemical and physical properties can be modified by the mode of their extraction, storage and distribution. These modifications might negatively affect the nutritional quality of the oils. The goals of this study were to: sample different vegetable oils for cosmetic or dietary use marketed in Cameroon, and verify purity and oxidation states of each kind of oil through determination of its acidity, iodine, peroxide, saponification, refractive indexes and the conformity of the labeling. The carotene content, the level of polar components and specific absorbance were also determined. As the result, six oils namely palm, palm kernel, coconut, black cumin, peanut and shea butter were collected. Apart from labeling, chemicals and physicals parameters analyzed were generally in accordance with the Cameroonian and Codex Alimentarius standard. This study suggests that vegetable oils sampled in the Cameroonian market may not expose consumers to lipid oxidation products generating pathological oxidative stress and inflammation. However, efforts in application of existing standard need to be done as far as labeling are concerned.展开更多
This study presents a contribution to the development of a model for vegetable oil droplets vaporization, with a particular focus on the influence of the experimental set-up for their use as fuel in diesel engines. Tw...This study presents a contribution to the development of a model for vegetable oil droplets vaporization, with a particular focus on the influence of the experimental set-up for their use as fuel in diesel engines. Two systems were considered: an open-environment system obtained through a hot gas flow, and a closed-environment system. Vaporization was conducted under identical conditions, with the results subsequently compared. The findings indicate that, for temperatures between 473 K and 673 K, droplets behaviour in both systems presents only a heating and expansion phase. For temperatures above 673 K, the behaviour of the droplets differs between the devices. In the open environment device, a linear reduction in droplets diameter is observed following the transient phase, suggesting stationary vaporization and enabling the calculation of a vaporization constant and the well-known D2 law is respected. In the closed-environment device, puffing, micro-explosions and gas ejections are observed, and it is not possible to determine vaporization constant and D2 law is not respected. The results demonstrate the necessity of developing a model for the thermal decomposition of vegetable oil before attempting to create a model for the vaporization of these oils. In order to achieve this, it is essential to construct an experimental setup that more closely emulates the real conditions within the combustion chamber of a diesel engine, taking into account the variables of pressure, temperature and the heating process.展开更多
[Objective] The study discussed the indoor activity and field control effect of vegetable oil on cucumber powdery mildew.[Method] The cucumber seedlings of Changchunmici were adopted as the material,which were inocula...[Objective] The study discussed the indoor activity and field control effect of vegetable oil on cucumber powdery mildew.[Method] The cucumber seedlings of Changchunmici were adopted as the material,which were inoculated with the fungus pathogen of cucumber powdery mildew naturally occurred in the field.The indoor protective test and field test were performed respectively to observe the control effects of different plant oils EC on the cucumber powdery mildew.[Result] When six plant oils EC including cottonseed oil,soybean oil,canola oil,corn oil,sesame oil and sunflower oil was diluted into 10 and 5 ml/L,they had better control effect on cucumber powdery mildew.As for the indoor protective effect,the protective effect of the vegetable oil EC was equivalent to the control agent triadimefon EC,the field control effect of vegetable oil EC was in the range of 60%-75%,which was consistent with 69%-70% control effect of contrast agent with 1 ml/L triadimefon EC dilution.[Conclusion] All vegetable oils EC had significant control effect on cucumber powdery mildew in the test.展开更多
Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL). This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oi...Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL). This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM-III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grinding temperature, and energy ratio coefficient of MQL grinding were compared among the seven vegetable oil types. Results revealed that (1) castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient; (2) palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient; (3) MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil; (4) viscosity significantly influences grinding force and grinding temperature to a greater extent than fatty acid varieties and contents in vegetable oils; (5) although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less viscous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature; (6) saturated fatty acid is a more efficient lubricant than unsaturated fatty acid; and (7) a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 degrees C grinding temperature, and 42.7% energy ratio coefficient. (C) 2015 The Authors. Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics.展开更多
Cutting fluid is crucial in ensuring surface quality and machining accuracy during machining.However,traditional mineral oil-based cutting fluids no longer meet modern machining’s health and environmental protection ...Cutting fluid is crucial in ensuring surface quality and machining accuracy during machining.However,traditional mineral oil-based cutting fluids no longer meet modern machining’s health and environmental protection require-ments.As a renewable,pollution-free alternative with excellent processing characteristics,vegetable oil has become an inevitable replacement.However,vegetable oil lacks oxidation stability,extreme pressure,and antiwear proper-ties,which are essential for machining requirements.The physicochemical characteristics of vegetable oils and the improved methods’application mechanism are not fully understood.This study aims to investigate the effects of viscosity,surface tension,and molecular structure of vegetable oil on cooling and lubricating properties.The mechanisms of autoxidation and high-temperature oxidation based on the molecular structure of vegetable oil are also discussed.The study further investigates the application mechanism and performance of chemical modification and antioxidant additives.The study shows that the propionic ester of methyl hydroxy-oleate obtained by epoxidation has an initial oxidation temperature of 175℃.The application mechanism and extreme pressure performance of conventional extreme pressure additives and nanoparticle additives were also investigated to solve the problem of insufficient oxidation resistance and extreme pressure performance of nanobiological lubricants.Finally,the study discusses the future prospects of vegetable oil for chemical modification and nanoparticle addition.The study provides theoretical guidance and technical support for the industrial application and scientific research of vegetable oil in the field of lubrication and cooling.It is expected to promote sustainable development in the manufacturing industry.展开更多
We investigated the effect of the replacement of dietary fish oil with vegetable oils on the growth and flesh quality of large yellow croaker(Larmichthys crocea). The basal diet(FO) was formulated to contain 66.5% fis...We investigated the effect of the replacement of dietary fish oil with vegetable oils on the growth and flesh quality of large yellow croaker(Larmichthys crocea). The basal diet(FO) was formulated to contain 66.5% fish meal and 6.4% menhaden fish oil; whereas the other 3 experimental diets were formulated by replacing the fish oil with 50% soybean oil(SO50), 100% soybean oil(SO100) and 100% palm oil(PO100), respectively. The 4 diets were randomly assigned to 4 floating sea cages(3.0 m × 3.0 m × 3.0 m), and each was stocked with 250 fish individuals with an initial average weight of 245.29 g ± 7.45 g. The fish were fed to apparent satiation twice a day at 5:00 and 17:00, respectively, for 12 weeks. Experimental analysis showed that the specific growth rate of fish fed SO50 or PO100 were significantly higher than that of fish fed FO or SO100(P<0.05), and crude lipid contents of ventral muscle and viscera were significantly lower in fish fed FO than in those fed the other 3 diets(P<0.05). No significant differences in condition factor, viscerosomatic index, hepatosomatic index, gutted yield and colorimetric values of fish among the dietary treatments were observed(P>0.05). Compared to FO diet, SO50, SO100 and PO100 diets led to substantial decreases in the liquid loss and water loss from fresh fillets(1 d, 4℃)(P<0.05). Similarly, thiobarbituric acid reactive substance(TBARS) values of fillets under different storage conditions(1 d, 4℃; 7 d, 4℃; 4 weeks,-20℃; 8 weeks,-20℃) decreased significantly after partial or complete replacement of fish oil with vegetable oils. These findings indicated that the growth performance and selected flesh quality properties(liquid holding capacity and TBARS value) of large yellow croaker were substantially improved by replacing dietary fish oil with vegetable oils.展开更多
Since the production cost of biodiesel is now the main hurdle limiting their applicability in some areas, catalytic cracking reactions represent an alternative route to utilization of vegetable oils and animal fats. H...Since the production cost of biodiesel is now the main hurdle limiting their applicability in some areas, catalytic cracking reactions represent an alternative route to utilization of vegetable oils and animal fats. Hence, catalytic transformation of oils and fats was carried out in a laboratory-scale two-stage riser fluid catalytic cracking (TSRFCC) unit in this work. The results show that oils and fats can be used as FCC feed singly or co-feeding with vacuum gas oil (VGO), which can give high yield (by mass)of liquefied petroleum gas (LPG), C2-C4 oletms, tor example 45% LPG, 47% C2-C4 olefins, and 77.6% total liquid yield produced with palm oil cracking. Co-feeding with VGO gives a high yield of LPG (39.1%) and propylene (18.1%). And oxygen element content is very low (about 0.5%) in liquid products, hence, oxygen is removed in the form of H2O, CO and CO2. At the same time, high concentration of aromatics (C7-C9 aromatics predominantly) in the gasoline fraction is obtained after TSRFCC reaction of palm oil, as a result of large amount of hydrogen-transfer, cyclization and aromatization reactions, Additionally, most of properties of produced gasoline and diesel oil fuel meet the requirements of national standards, containing little sulfur. So TSRFCC technology is thought to be an alternative processing technology leading to production of clean fuels and light olefins.展开更多
The composition of a collector directly affects its collecting performance in mineral flotation.In this study,three vegetable oils were used as the collectors,the flotation performance of scheelite and the differentia...The composition of a collector directly affects its collecting performance in mineral flotation.In this study,three vegetable oils were used as the collectors,the flotation performance of scheelite and the differential analysis were studied through flotation experiments,zeta potential,contact angle measurement and Fourier transform infrared spectrum(FTIR)analysis.Flotation results show that the recovery of scheelite increases in the order of oleic acid<rapeseed oil<rice bran oil<soybean oil,especially in the pH range of 5-8.The distinction in the scheelite recovery is due to the different compositions of these collectors.The addition of LA,LNA and PA(<5%)can increase the recovery of scheelite with OA,but the addition of SA deteriorates the scheelite flotation.Results of zeta potential,contact angle measurement and FTIR analysis indicate that the collector adsorption on scheelite surface is enhanced when using the three vegetable oils.For the raw ore with 0.086%WO3,a rough concentrate containing 1.423%WO3 with the recovery of 84.22%is obtained using soybean oil as the collector.展开更多
Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons(PAHs)from contaminated sandy soil for a remediation purpose,with some of the oil remaining in the soil.Although most of the PAHs were removed,t...Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons(PAHs)from contaminated sandy soil for a remediation purpose,with some of the oil remaining in the soil.Although most of the PAHs were removed,the risk of residue oil in the soil was not known.The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soil properties after soil extraction for a better understanding of the soil remediation.Addition of sunflower oil and column ex...展开更多
The double bonds in the vegetable oils can be conjungated and Diels-Alder react when they are heated in the existence of the catalyst. The percent of the double bond will decrease and the oxidative stability of the ve...The double bonds in the vegetable oils can be conjungated and Diels-Alder react when they are heated in the existence of the catalyst. The percent of the double bond will decrease and the oxidative stability of the vegetable oils can be ameliorated. Dimmer acid can react with different carbon chain length of alcohols to form dimmer acid esters. A series of dimmer acid esters were synthesized and their rheological characteristics (viscosity, viscosity index, pour point) and tribological characteristics (the coefficient of friction at different load, the characteristic of extreine pressure ( PB ), the wear scare diameter ( D30min^196N ) were evaluated and analyzed. The results showed that the characteristics of Di-iso-octanol dimmer acid ester were the best among the synthesized dimmer esters. It' s a lubricant with good properties(the viscosity is 94.5 mm^2/s, the viscosity index is high up to 141 and the pour point is - 49℃ ). It is a kind of newly interesthing ester type lubricant. Its rheological and tribological characteristics are even better than those of the slap-up synthesized lubricant--pentaerythritol esters (C7-9 acidate). The FT-IR spectrophotometer was used to analyze the structure of the synthetic esters. Their IR spectra are the same as the typical IR spectrum of ester. The test indicated that Di-iso-octanol dimmer acid ester could be used as a kind of base lubricant with excellent quantity.展开更多
In order to prepare the polyol with all bio-based components as raw materials,cottonseed oil was first epoxidized by peroxyformic acid generated in situ from hydrogen peroxide and formic acid,and the cottonseed oil ba...In order to prepare the polyol with all bio-based components as raw materials,cottonseed oil was first epoxidized by peroxyformic acid generated in situ from hydrogen peroxide and formic acid,and the cottonseed oil based polyols with variable hydroxyl value were then prepared by the ring-opening of epoxidized cottonseed oil with sorbitol,which is a multi-functional hydroxyl compound derived from a natural source.The chemical structure of the products was characterized with FTIR analysis, and the residual epoxy oxygen content and hydroxyl value of the polyol versus the ring-opening time were investigated.展开更多
The generation of reliable experimental data in any experimental scale requires proper procedures not only for the reaction step but also for the feed preparation,separation,and characterization of products as well as...The generation of reliable experimental data in any experimental scale requires proper procedures not only for the reaction step but also for the feed preparation,separation,and characterization of products as well as calculations of conversion and product yields.Batch reactor is the most used experimental setup for carrying out exploratory studies for catalyst screening and development.This work is focused on describing and discussing a step-by-step methodology for conducting experiments for catalytic hydrotreating of vegetable oils in batch reactor.The proposed methodology considers literature and own experiences on advantages and disadvantages of different feed types,catalysts,experimental setup and procedures,effect of reaction parameters,separation and characterization of products,and calculations.展开更多
The increasing demand of natural food from consumers has limited the use of traditional methods to control the oxidation of lipids,such as synthetic antioxidants and hydrogenation.Besides,it has been reported that the...The increasing demand of natural food from consumers has limited the use of traditional methods to control the oxidation of lipids,such as synthetic antioxidants and hydrogenation.Besides,it has been reported that the use of enzymes is efficient to eliminate dissolved oxygen in foods such as vegetable oils.Laccase is a polyphenol oxidase and the reduction of oxygen to water is accompanied by the oxidation,typically,of a phenolic substrate.Laccase have become important,industrially relevant enzymes that can be used for a number of diverse applications such waste detoxification,textile dye transformation,food technologic uses,biosensor and analytical applications,bioethanol production,among others.The target of this study was to evaluate the effect of laccase enzyme from Trametes versicolor,on the oxidative stability of sesame,chia,peanut and sunflower oils,measured through the peroxide value(PV)and conjugated dienes(K232)and trienes(K270).The samples of oil with laccase showed higher PV,K232 and K270 than their corresponding controls,under the conditions evaluated(room temperature and 60◦C).The results suggest that fungal laccase has an unexpected pro-oxidant effect on vegetable oils,possibly promoted by products derived from the oxidation of phenols by enzymatic action.展开更多
The current study of minimum quantity lubrication(MQL)concentrates on its performance improvement.By contrast with nanofluid MQL and electrostatic atomization(EA),the proposed nanofluid composite electrostatic sprayin...The current study of minimum quantity lubrication(MQL)concentrates on its performance improvement.By contrast with nanofluid MQL and electrostatic atomization(EA),the proposed nanofluid composite electrostatic spraying(NCES)can enhance the performance of MQL more comprehensively.However,it is largely influenced by the base fluid of external fluid.In this paper,the lubrication property and machining performance of NCES with different types of vegetable oils(castor,palm,soybean,rapeseed,and LB2000 oil)as the base fluids of external fluid were compared and evaluated by friction and milling tests under different flow ratios of external and internal fluids.The spraying current and electrowetting angle were tested to analyze the influence of vegetable oil type as the base fluid of external fluid on NCES performances.The friction test results show that relative to NCES with other vegetable oils as the base fluids of external fluid,NCES with LB2000 as the base fluid of external fluid reduced the friction coefficient and wear loss by 9.4%-27.7%and 7.6%-26.5%,respectively.The milling test results display that the milling force and milling temperature for NCES with LB2000 as the base fluid of external fluid were 1.4%-13.2%and 3.6%-11.2%lower than those for NCES with other vegetable oils as the base fluids of external fluid,respectively.When LB2000/multi-walled carbon nanotube(MWCNT)water-based nanofluid was used as the external/internal fluid and the flow ratio of external and internal fluids was 2:1,NCES showed the best milling performance.This study provides theoretical and technical support for the selection of the base fluid of NCES external fluid.展开更多
Widespread contamination by nitrobenzene(NB) in sediments and groundwater requires better understanding of the biogeochemical removal process of the pollutant. NB degradation, coupled with dissimilatory iron reducti...Widespread contamination by nitrobenzene(NB) in sediments and groundwater requires better understanding of the biogeochemical removal process of the pollutant. NB degradation, coupled with dissimilatory iron reduction, is one of the most efficient pollutant removal methods. However, research on NB degradation coupled to indigenous microorganism dissimilatory iron reduction stimulated by electron donors is still experimental. A model for remediation in an actual polluted site does not currently exist.Therefore, in this study, the dynamics was derived from the Michaelis–Menten model(when the mass ratio of emulsified vegetable oil and NB reached the critical value 91:1). The effect of SO4^(2-), NO3^-, Ca^(2+)/Mg^(2+), and the grain size of aquifer media on the dynamics were studied, and the NB degradation dynamic model was then modified based on the most significant factors. Utilizing the model, the remediation time could be calculated in a contaminated site.展开更多
In this paper,the effect of using hindered phenol,zinc dialkyl dithiocarbamate(ZDDC),tolutriazole derivative and combinations thereof to inhibit a blend of commodity Canola Oil and high oleic content soybean oil(1:1) ...In this paper,the effect of using hindered phenol,zinc dialkyl dithiocarbamate(ZDDC),tolutriazole derivative and combinations thereof to inhibit a blend of commodity Canola Oil and high oleic content soybean oil(1:1) was investigated.Specifically,oils were oxidized by bubbling oxygen through 300 mL samples heated at 95 ℃.Antioxidant depletion rates were indirectly monitored by measuring oxidation induction times(OIT) as determined by Pressure Differential Scanning Calorimetry(PDSC).Preliminary data indicated that oil treated with only ZDDC had the slowest rate of antioxidant depletion.展开更多
As important supplementary to major edible oils, comparative chemical advantages of minor edible oils decidetheir development and usage. In this study, chemical composition of 13 kinds of specific edible vegetable oil...As important supplementary to major edible oils, comparative chemical advantages of minor edible oils decidetheir development and usage. In this study, chemical composition of 13 kinds of specific edible vegetable oilswere investigated. The comparative advantages of chemical compositions of these edible oils were obtained asfollows: (1) camellia, tiger nut and almond oil were rich in oleic acid, the contents of which accounted for79.43%, 69.16% and 66.26%, respectively;(2) safflower oil contained the highest content of linoleic acid(76.69%), followed by grape seed (66.85%) and walnut oil (57.30%);(3) perilla seed, siritch, peony seed andherbaceous peony seed oil were rich in α-linolenic acid (59.61%, 43.74%, 40.83% and 30.84%, respectively);(4)the total phytosterol contents of these oils ranged from 91.46 mg/100 g (camellia oil) to 506.46 mg/100 g (siritchoil);and (5) The best source of tocopherols was sacha inchi oil (122.74 mg/100 g), followed by perilla seed oil(55.89 mg/100 g), peony seed oil (53.73 mg/100 g) and herbaceous peony seed oil (47.17 mg/100 g). Thecomparative advantages of these specific edible oils indicated that they possess the high potential nutritionalvalues and health care functions.展开更多
Headspace solid phase microextraction chromatography (HS-SPME/GC) was evaluated as a tool in determining the rate of oxidation in oxidized soybean oil samples by measuring the production of hexanal as a secondary ma...Headspace solid phase microextraction chromatography (HS-SPME/GC) was evaluated as a tool in determining the rate of oxidation in oxidized soybean oil samples by measuring the production of hexanal as a secondary major volatile breakdown product of linoleic acid. Samples of the headspace taken from sealed 20 mL vials, incubated 30 min at 50 ~C followed by 5 min adsorption, were injected into a gas chromatograph with 2 min thermal desorption. In applying SPME, different analytical conditions were evaluated. The linearity of response of the volatiles for the HS-SPME/GC procedure using a carboxen-polydimethylsiloxane fiber was determined from 3 g of mineral oil spiked with a hexanal standard solution at different levels. Using the optimized extraction conditions, an R value close to unity (R = 0.999) was found, and the repeatability (n = 1 l) was 6.31%. The results indicated that hexanal is linearly related to peroxide value (PV) only intermediate PV ranges (10-18 meq/kg). The study also showed that HS-SPME/GC procedure was a simple and reproducible method for the analysis of hexanal in the HS of commercial soybean oil samples, and is useful as a quality control and research tool for the evaluation of flavor quality and shelf life of vegetable oils.展开更多
文摘For internal combustion engines,engines installed for transport ships,cargo ships,and fishing vessels are mainly diesel engines.The number of engines is increasing due to the development of the maritime and seafood exploitation sectors.Therefore,the high demand for petroleum fuels increases environmental pollution due to engine emissions.Reducing environmental pollution from the combustion of petroleum fuels has become a concern worldwide,especially for internal combustion engines.The exhaust gases from the engine contain harmful substances such as soot and nitrogen oxides(NO_(x)).Fuels with higher carbon content generate more soot when burned.In contrast,biofuels have low carbon and sulfur content and supply ample oxygen,which helps to reduce soot formation.For these reasons,biofuels are encouraged as alternative fuels to petroleum.Vegetable oil is one of the primary raw materials for biofuel production.This study presents a mixture of diesel and vegetable oil utilized as fuel for fishing vessels’diesel engines.The results of experimental research on a fishing vessel’s 4CHE Yanmar diesel engine when using diesel fuel mixed with coconut oil(B15,15%coconut oil,and 85%diesel)show that increasing B15 fuel injection pressure by about 10–15%compared with diesel fuel injection pressure reduces the engine’s soot emissions and increases power compared to unadjusted.This solution contributes to reducing environmental pollution from engine emissions.
基金the National Centre of Excellence in Analytical Chemistry,University of Sindh,Jamshoro,Pakistan,for providing financial support to carry out this work.
文摘Oil blending is the method of choice used worldwide to improve oxidative stability and nutritional value.There is no such edible oil/fat that meets all the recommendations from the health point of view.The fatty acid composition of vegetable oils decides the fate of the oil.Pure single oil is unable to provide a balanced amount of fatty acids(FAs)required/recommended on a daily intake basis.Blending oils/fats is an appropriate procedure of physically mixing multiple oils in suitable proportions which may provide functional lipids with improved antioxidant potential and desirable physical and chemical properties.This review piled up the accessible data on the blending of diverse oils/fats in the combination of binary,ternary,quaternary,or other types of oils into a single blended oil.Blending can be found very convincing towards appropriate FA profile,enhancement in physicochemical characteristics,and augmented stability for the period of storage or when used as cooking/frying processes which could ultimately serve as an effectual dietary intervention towards the health protectiveness.
文摘Vegetable oils are a source of energy, essential fatty acids, antioxidants and fat-soluble vitamins useful for human health care and development. These oils also contribute to organoleptic quality of their products’ derivatives. However, their chemical and physical properties can be modified by the mode of their extraction, storage and distribution. These modifications might negatively affect the nutritional quality of the oils. The goals of this study were to: sample different vegetable oils for cosmetic or dietary use marketed in Cameroon, and verify purity and oxidation states of each kind of oil through determination of its acidity, iodine, peroxide, saponification, refractive indexes and the conformity of the labeling. The carotene content, the level of polar components and specific absorbance were also determined. As the result, six oils namely palm, palm kernel, coconut, black cumin, peanut and shea butter were collected. Apart from labeling, chemicals and physicals parameters analyzed were generally in accordance with the Cameroonian and Codex Alimentarius standard. This study suggests that vegetable oils sampled in the Cameroonian market may not expose consumers to lipid oxidation products generating pathological oxidative stress and inflammation. However, efforts in application of existing standard need to be done as far as labeling are concerned.
文摘This study presents a contribution to the development of a model for vegetable oil droplets vaporization, with a particular focus on the influence of the experimental set-up for their use as fuel in diesel engines. Two systems were considered: an open-environment system obtained through a hot gas flow, and a closed-environment system. Vaporization was conducted under identical conditions, with the results subsequently compared. The findings indicate that, for temperatures between 473 K and 673 K, droplets behaviour in both systems presents only a heating and expansion phase. For temperatures above 673 K, the behaviour of the droplets differs between the devices. In the open environment device, a linear reduction in droplets diameter is observed following the transient phase, suggesting stationary vaporization and enabling the calculation of a vaporization constant and the well-known D2 law is respected. In the closed-environment device, puffing, micro-explosions and gas ejections are observed, and it is not possible to determine vaporization constant and D2 law is not respected. The results demonstrate the necessity of developing a model for the thermal decomposition of vegetable oil before attempting to create a model for the vaporization of these oils. In order to achieve this, it is essential to construct an experimental setup that more closely emulates the real conditions within the combustion chamber of a diesel engine, taking into account the variables of pressure, temperature and the heating process.
基金Supported by Students Innovation Fund in Liaocheng UniversityKey topics Projects in Liaocheng University(x061005)Science and Technology Development Program,Education Department of Shandong Province(J09Lc17)~~
文摘[Objective] The study discussed the indoor activity and field control effect of vegetable oil on cucumber powdery mildew.[Method] The cucumber seedlings of Changchunmici were adopted as the material,which were inoculated with the fungus pathogen of cucumber powdery mildew naturally occurred in the field.The indoor protective test and field test were performed respectively to observe the control effects of different plant oils EC on the cucumber powdery mildew.[Result] When six plant oils EC including cottonseed oil,soybean oil,canola oil,corn oil,sesame oil and sunflower oil was diluted into 10 and 5 ml/L,they had better control effect on cucumber powdery mildew.As for the indoor protective effect,the protective effect of the vegetable oil EC was equivalent to the control agent triadimefon EC,the field control effect of vegetable oil EC was in the range of 60%-75%,which was consistent with 69%-70% control effect of contrast agent with 1 ml/L triadimefon EC dilution.[Conclusion] All vegetable oils EC had significant control effect on cucumber powdery mildew in the test.
基金co-supported by the National Natural Science Foundation of China (Nos. 51175276 and 51575290)the Qingdao Science and Technology Program of Basic Research Projects (No. 14-2-4-18-jch) of Chinathe Huangdao District Application Science and Technology Project (No. 2014-1-55) of China
文摘Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL). This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM-III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grinding temperature, and energy ratio coefficient of MQL grinding were compared among the seven vegetable oil types. Results revealed that (1) castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient; (2) palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient; (3) MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil; (4) viscosity significantly influences grinding force and grinding temperature to a greater extent than fatty acid varieties and contents in vegetable oils; (5) although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less viscous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature; (6) saturated fatty acid is a more efficient lubricant than unsaturated fatty acid; and (7) a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 degrees C grinding temperature, and 42.7% energy ratio coefficient. (C) 2015 The Authors. Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics.
基金Supported by National Key Research and Development Program of China(Grant No.2020YFB2010500)National Natural Science Foundation of China(Grant Nos.51975305,52105457)Shandong Provincial Natural Science Foundation of China(Grant No.ZR2020KE027).
文摘Cutting fluid is crucial in ensuring surface quality and machining accuracy during machining.However,traditional mineral oil-based cutting fluids no longer meet modern machining’s health and environmental protection require-ments.As a renewable,pollution-free alternative with excellent processing characteristics,vegetable oil has become an inevitable replacement.However,vegetable oil lacks oxidation stability,extreme pressure,and antiwear proper-ties,which are essential for machining requirements.The physicochemical characteristics of vegetable oils and the improved methods’application mechanism are not fully understood.This study aims to investigate the effects of viscosity,surface tension,and molecular structure of vegetable oil on cooling and lubricating properties.The mechanisms of autoxidation and high-temperature oxidation based on the molecular structure of vegetable oil are also discussed.The study further investigates the application mechanism and performance of chemical modification and antioxidant additives.The study shows that the propionic ester of methyl hydroxy-oleate obtained by epoxidation has an initial oxidation temperature of 175℃.The application mechanism and extreme pressure performance of conventional extreme pressure additives and nanoparticle additives were also investigated to solve the problem of insufficient oxidation resistance and extreme pressure performance of nanobiological lubricants.Finally,the study discusses the future prospects of vegetable oil for chemical modification and nanoparticle addition.The study provides theoretical guidance and technical support for the industrial application and scientific research of vegetable oil in the field of lubrication and cooling.It is expected to promote sustainable development in the manufacturing industry.
基金supported by the National Key Technologies R&D Program for the 10th and 11th Five-year Plan of China (Grant No.: 2001BA505B-06)
文摘We investigated the effect of the replacement of dietary fish oil with vegetable oils on the growth and flesh quality of large yellow croaker(Larmichthys crocea). The basal diet(FO) was formulated to contain 66.5% fish meal and 6.4% menhaden fish oil; whereas the other 3 experimental diets were formulated by replacing the fish oil with 50% soybean oil(SO50), 100% soybean oil(SO100) and 100% palm oil(PO100), respectively. The 4 diets were randomly assigned to 4 floating sea cages(3.0 m × 3.0 m × 3.0 m), and each was stocked with 250 fish individuals with an initial average weight of 245.29 g ± 7.45 g. The fish were fed to apparent satiation twice a day at 5:00 and 17:00, respectively, for 12 weeks. Experimental analysis showed that the specific growth rate of fish fed SO50 or PO100 were significantly higher than that of fish fed FO or SO100(P<0.05), and crude lipid contents of ventral muscle and viscera were significantly lower in fish fed FO than in those fed the other 3 diets(P<0.05). No significant differences in condition factor, viscerosomatic index, hepatosomatic index, gutted yield and colorimetric values of fish among the dietary treatments were observed(P>0.05). Compared to FO diet, SO50, SO100 and PO100 diets led to substantial decreases in the liquid loss and water loss from fresh fillets(1 d, 4℃)(P<0.05). Similarly, thiobarbituric acid reactive substance(TBARS) values of fillets under different storage conditions(1 d, 4℃; 7 d, 4℃; 4 weeks,-20℃; 8 weeks,-20℃) decreased significantly after partial or complete replacement of fish oil with vegetable oils. These findings indicated that the growth performance and selected flesh quality properties(liquid holding capacity and TBARS value) of large yellow croaker were substantially improved by replacing dietary fish oil with vegetable oils.
基金the Major Research Plan of PetroChina Company Limited (07-03D-01-01-02-02)
文摘Since the production cost of biodiesel is now the main hurdle limiting their applicability in some areas, catalytic cracking reactions represent an alternative route to utilization of vegetable oils and animal fats. Hence, catalytic transformation of oils and fats was carried out in a laboratory-scale two-stage riser fluid catalytic cracking (TSRFCC) unit in this work. The results show that oils and fats can be used as FCC feed singly or co-feeding with vacuum gas oil (VGO), which can give high yield (by mass)of liquefied petroleum gas (LPG), C2-C4 oletms, tor example 45% LPG, 47% C2-C4 olefins, and 77.6% total liquid yield produced with palm oil cracking. Co-feeding with VGO gives a high yield of LPG (39.1%) and propylene (18.1%). And oxygen element content is very low (about 0.5%) in liquid products, hence, oxygen is removed in the form of H2O, CO and CO2. At the same time, high concentration of aromatics (C7-C9 aromatics predominantly) in the gasoline fraction is obtained after TSRFCC reaction of palm oil, as a result of large amount of hydrogen-transfer, cyclization and aromatization reactions, Additionally, most of properties of produced gasoline and diesel oil fuel meet the requirements of national standards, containing little sulfur. So TSRFCC technology is thought to be an alternative processing technology leading to production of clean fuels and light olefins.
基金Project(2016RS2016) supported by Provincial Science and Technology Leader Program,Hunan,ChinaProject(2017zzts807) supported by Postgraduate Innovative Research Projects of Central South University,China
文摘The composition of a collector directly affects its collecting performance in mineral flotation.In this study,three vegetable oils were used as the collectors,the flotation performance of scheelite and the differential analysis were studied through flotation experiments,zeta potential,contact angle measurement and Fourier transform infrared spectrum(FTIR)analysis.Flotation results show that the recovery of scheelite increases in the order of oleic acid<rapeseed oil<rice bran oil<soybean oil,especially in the pH range of 5-8.The distinction in the scheelite recovery is due to the different compositions of these collectors.The addition of LA,LNA and PA(<5%)can increase the recovery of scheelite with OA,but the addition of SA deteriorates the scheelite flotation.Results of zeta potential,contact angle measurement and FTIR analysis indicate that the collector adsorption on scheelite surface is enhanced when using the three vegetable oils.For the raw ore with 0.086%WO3,a rough concentrate containing 1.423%WO3 with the recovery of 84.22%is obtained using soybean oil as the collector.
基金supported by the National Natural Science Foundation of China(No.20707030)the National Basic Research Program(973)of China(No.2004CB418506)
文摘Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons(PAHs)from contaminated sandy soil for a remediation purpose,with some of the oil remaining in the soil.Although most of the PAHs were removed,the risk of residue oil in the soil was not known.The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soil properties after soil extraction for a better understanding of the soil remediation.Addition of sunflower oil and column ex...
文摘The double bonds in the vegetable oils can be conjungated and Diels-Alder react when they are heated in the existence of the catalyst. The percent of the double bond will decrease and the oxidative stability of the vegetable oils can be ameliorated. Dimmer acid can react with different carbon chain length of alcohols to form dimmer acid esters. A series of dimmer acid esters were synthesized and their rheological characteristics (viscosity, viscosity index, pour point) and tribological characteristics (the coefficient of friction at different load, the characteristic of extreine pressure ( PB ), the wear scare diameter ( D30min^196N ) were evaluated and analyzed. The results showed that the characteristics of Di-iso-octanol dimmer acid ester were the best among the synthesized dimmer esters. It' s a lubricant with good properties(the viscosity is 94.5 mm^2/s, the viscosity index is high up to 141 and the pour point is - 49℃ ). It is a kind of newly interesthing ester type lubricant. Its rheological and tribological characteristics are even better than those of the slap-up synthesized lubricant--pentaerythritol esters (C7-9 acidate). The FT-IR spectrophotometer was used to analyze the structure of the synthetic esters. Their IR spectra are the same as the typical IR spectrum of ester. The test indicated that Di-iso-octanol dimmer acid ester could be used as a kind of base lubricant with excellent quantity.
文摘In order to prepare the polyol with all bio-based components as raw materials,cottonseed oil was first epoxidized by peroxyformic acid generated in situ from hydrogen peroxide and formic acid,and the cottonseed oil based polyols with variable hydroxyl value were then prepared by the ring-opening of epoxidized cottonseed oil with sorbitol,which is a multi-functional hydroxyl compound derived from a natural source.The chemical structure of the products was characterized with FTIR analysis, and the residual epoxy oxygen content and hydroxyl value of the polyol versus the ring-opening time were investigated.
基金the Mexican Institute of Petroleum for supporting this research projectConsejo Nacional de Ciencia y Tecnología(CONACYT)for the Ph.D.and MSc scholarship grant。
文摘The generation of reliable experimental data in any experimental scale requires proper procedures not only for the reaction step but also for the feed preparation,separation,and characterization of products as well as calculations of conversion and product yields.Batch reactor is the most used experimental setup for carrying out exploratory studies for catalyst screening and development.This work is focused on describing and discussing a step-by-step methodology for conducting experiments for catalytic hydrotreating of vegetable oils in batch reactor.The proposed methodology considers literature and own experiences on advantages and disadvantages of different feed types,catalysts,experimental setup and procedures,effect of reaction parameters,separation and characterization of products,and calculations.
基金This work was funded by Consejo Nacional de Investigaciones Científicas y Técnicas(CONICET)and Secretaria de Ciencia y Técnica(SECyT)-Universidad Nacional de Córdoba,Argentina.
文摘The increasing demand of natural food from consumers has limited the use of traditional methods to control the oxidation of lipids,such as synthetic antioxidants and hydrogenation.Besides,it has been reported that the use of enzymes is efficient to eliminate dissolved oxygen in foods such as vegetable oils.Laccase is a polyphenol oxidase and the reduction of oxygen to water is accompanied by the oxidation,typically,of a phenolic substrate.Laccase have become important,industrially relevant enzymes that can be used for a number of diverse applications such waste detoxification,textile dye transformation,food technologic uses,biosensor and analytical applications,bioethanol production,among others.The target of this study was to evaluate the effect of laccase enzyme from Trametes versicolor,on the oxidative stability of sesame,chia,peanut and sunflower oils,measured through the peroxide value(PV)and conjugated dienes(K232)and trienes(K270).The samples of oil with laccase showed higher PV,K232 and K270 than their corresponding controls,under the conditions evaluated(room temperature and 60◦C).The results suggest that fungal laccase has an unexpected pro-oxidant effect on vegetable oils,possibly promoted by products derived from the oxidation of phenols by enzymatic action.
基金Supported by National Natural Science Foundation of China(Grant Nos.52175411 and 51205177)Jiangsu Provincial Natural Science Foundation(Grant Nos.BK20171307 and BK2012277).
文摘The current study of minimum quantity lubrication(MQL)concentrates on its performance improvement.By contrast with nanofluid MQL and electrostatic atomization(EA),the proposed nanofluid composite electrostatic spraying(NCES)can enhance the performance of MQL more comprehensively.However,it is largely influenced by the base fluid of external fluid.In this paper,the lubrication property and machining performance of NCES with different types of vegetable oils(castor,palm,soybean,rapeseed,and LB2000 oil)as the base fluids of external fluid were compared and evaluated by friction and milling tests under different flow ratios of external and internal fluids.The spraying current and electrowetting angle were tested to analyze the influence of vegetable oil type as the base fluid of external fluid on NCES performances.The friction test results show that relative to NCES with other vegetable oils as the base fluids of external fluid,NCES with LB2000 as the base fluid of external fluid reduced the friction coefficient and wear loss by 9.4%-27.7%and 7.6%-26.5%,respectively.The milling test results display that the milling force and milling temperature for NCES with LB2000 as the base fluid of external fluid were 1.4%-13.2%and 3.6%-11.2%lower than those for NCES with other vegetable oils as the base fluids of external fluid,respectively.When LB2000/multi-walled carbon nanotube(MWCNT)water-based nanofluid was used as the external/internal fluid and the flow ratio of external and internal fluids was 2:1,NCES showed the best milling performance.This study provides theoretical and technical support for the selection of the base fluid of NCES external fluid.
基金funded by the National Natural Science Foundation of China(Nos.41272253,41402206 and 41530636)the National Science Foundation of Jilin Province(No.20130101027JC)+2 种基金 “the 12th Five-Year Plan” science and technology research projects of education department in Jilin Province(No.2014B012)the Graduate Innovation Fund of Jilin University(No.2015065)grateful for the support of the Key Laboratory of Groundwater Resources and Environment,Ministry of Education
文摘Widespread contamination by nitrobenzene(NB) in sediments and groundwater requires better understanding of the biogeochemical removal process of the pollutant. NB degradation, coupled with dissimilatory iron reduction, is one of the most efficient pollutant removal methods. However, research on NB degradation coupled to indigenous microorganism dissimilatory iron reduction stimulated by electron donors is still experimental. A model for remediation in an actual polluted site does not currently exist.Therefore, in this study, the dynamics was derived from the Michaelis–Menten model(when the mass ratio of emulsified vegetable oil and NB reached the critical value 91:1). The effect of SO4^(2-), NO3^-, Ca^(2+)/Mg^(2+), and the grain size of aquifer media on the dynamics were studied, and the NB degradation dynamic model was then modified based on the most significant factors. Utilizing the model, the remediation time could be calculated in a contaminated site.
文摘In this paper,the effect of using hindered phenol,zinc dialkyl dithiocarbamate(ZDDC),tolutriazole derivative and combinations thereof to inhibit a blend of commodity Canola Oil and high oleic content soybean oil(1:1) was investigated.Specifically,oils were oxidized by bubbling oxygen through 300 mL samples heated at 95 ℃.Antioxidant depletion rates were indirectly monitored by measuring oxidation induction times(OIT) as determined by Pressure Differential Scanning Calorimetry(PDSC).Preliminary data indicated that oil treated with only ZDDC had the slowest rate of antioxidant depletion.
基金supported by the National Key Research and Development Project of China(2021YFD1600101)the earmarked fund for China Agriculture research system(CARS-12 and CARS-13)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI).
文摘As important supplementary to major edible oils, comparative chemical advantages of minor edible oils decidetheir development and usage. In this study, chemical composition of 13 kinds of specific edible vegetable oilswere investigated. The comparative advantages of chemical compositions of these edible oils were obtained asfollows: (1) camellia, tiger nut and almond oil were rich in oleic acid, the contents of which accounted for79.43%, 69.16% and 66.26%, respectively;(2) safflower oil contained the highest content of linoleic acid(76.69%), followed by grape seed (66.85%) and walnut oil (57.30%);(3) perilla seed, siritch, peony seed andherbaceous peony seed oil were rich in α-linolenic acid (59.61%, 43.74%, 40.83% and 30.84%, respectively);(4)the total phytosterol contents of these oils ranged from 91.46 mg/100 g (camellia oil) to 506.46 mg/100 g (siritchoil);and (5) The best source of tocopherols was sacha inchi oil (122.74 mg/100 g), followed by perilla seed oil(55.89 mg/100 g), peony seed oil (53.73 mg/100 g) and herbaceous peony seed oil (47.17 mg/100 g). Thecomparative advantages of these specific edible oils indicated that they possess the high potential nutritionalvalues and health care functions.
文摘Headspace solid phase microextraction chromatography (HS-SPME/GC) was evaluated as a tool in determining the rate of oxidation in oxidized soybean oil samples by measuring the production of hexanal as a secondary major volatile breakdown product of linoleic acid. Samples of the headspace taken from sealed 20 mL vials, incubated 30 min at 50 ~C followed by 5 min adsorption, were injected into a gas chromatograph with 2 min thermal desorption. In applying SPME, different analytical conditions were evaluated. The linearity of response of the volatiles for the HS-SPME/GC procedure using a carboxen-polydimethylsiloxane fiber was determined from 3 g of mineral oil spiked with a hexanal standard solution at different levels. Using the optimized extraction conditions, an R value close to unity (R = 0.999) was found, and the repeatability (n = 1 l) was 6.31%. The results indicated that hexanal is linearly related to peroxide value (PV) only intermediate PV ranges (10-18 meq/kg). The study also showed that HS-SPME/GC procedure was a simple and reproducible method for the analysis of hexanal in the HS of commercial soybean oil samples, and is useful as a quality control and research tool for the evaluation of flavor quality and shelf life of vegetable oils.