期刊文献+
共找到118,606篇文章
< 1 2 250 >
每页显示 20 50 100
A survey of backdoor attacks and defenses:From deep neural networks to large language models
1
作者 Ling-Xin Jin Wei Jiang +5 位作者 Xiang-Yu Wen Mei-Yu Lin Jin-Yu Zhan Xing-Zhi Zhou Maregu Assefa Habtie Naoufel Werghi 《Journal of Electronic Science and Technology》 2025年第3期13-35,共23页
Deep neural networks(DNNs)have found extensive applications in safety-critical artificial intelligence systems,such as autonomous driving and facial recognition systems.However,recent research has revealed their susce... Deep neural networks(DNNs)have found extensive applications in safety-critical artificial intelligence systems,such as autonomous driving and facial recognition systems.However,recent research has revealed their susceptibility to backdoors maliciously injected by adversaries.This vulnerability arises due to the intricate architecture and opacity of DNNs,resulting in numerous redundant neurons embedded within the models.Adversaries exploit these vulnerabilities to conceal malicious backdoor information within DNNs,thereby causing erroneous outputs and posing substantial threats to the efficacy of DNN-based applications.This article presents a comprehensive survey of backdoor attacks against DNNs and the countermeasure methods employed to mitigate them.Initially,we trace the evolution of the concept from traditional backdoor attacks to backdoor attacks against DNNs,highlighting the feasibility and practicality of generating backdoor attacks against DNNs.Subsequently,we provide an overview of notable works encompassing various attack and defense strategies,facilitating a comparative analysis of their approaches.Through these discussions,we offer constructive insights aimed at refining these techniques.Finally,we extend our research perspective to the domain of large language models(LLMs)and synthesize the characteristics and developmental trends of backdoor attacks and defense methods targeting LLMs.Through a systematic review of existing studies on backdoor vulnerabilities in LLMs,we identify critical open challenges in this field and propose actionable directions for future research. 展开更多
关键词 Backdoor Attacks Backdoor defenses Deep neural networks Large language model
在线阅读 下载PDF
VTAN: A Novel Video Transformer Attention-Based Network for Dynamic Sign Language Recognition
2
作者 Ziyang Deng Weidong Min +2 位作者 Qing Han Mengxue Liu Longfei Li 《Computers, Materials & Continua》 2025年第2期2793-2812,共20页
Dynamic sign language recognition holds significant importance, particularly with the application of deep learning to address its complexity. However, existing methods face several challenges. Firstly, recognizing dyn... Dynamic sign language recognition holds significant importance, particularly with the application of deep learning to address its complexity. However, existing methods face several challenges. Firstly, recognizing dynamic sign language requires identifying keyframes that best represent the signs, and missing these keyframes reduces accuracy. Secondly, some methods do not focus enough on hand regions, which are small within the overall frame, leading to information loss. To address these challenges, we propose a novel Video Transformer Attention-based Network (VTAN) for dynamic sign language recognition. Our approach prioritizes informative frames and hand regions effectively. To tackle the first issue, we designed a keyframe extraction module enhanced by a convolutional autoencoder, which focuses on selecting information-rich frames and eliminating redundant ones from the video sequences. For the second issue, we developed a soft attention-based transformer module that emphasizes extracting features from hand regions, ensuring that the network pays more attention to hand information within sequences. This dual-focus approach improves effective dynamic sign language recognition by addressing the key challenges of identifying critical frames and emphasizing hand regions. Experimental results on two public benchmark datasets demonstrate the effectiveness of our network, outperforming most of the typical methods in sign language recognition tasks. 展开更多
关键词 Dynamic sign language recognition TRANSFORMER soft attention attention-based visual feature aggregation
在线阅读 下载PDF
Deep Learning-Based Natural Language Processing Model and Optical Character Recognition for Detection of Online Grooming on Social Networking Services
3
作者 Sangmin Kim Byeongcheon Lee +2 位作者 Muazzam Maqsood Jihoon Moon Seungmin Rho 《Computer Modeling in Engineering & Sciences》 2025年第5期2079-2108,共30页
The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children a... The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children and adolescents who are increasingly exposed to online grooming crimes.Early and accurate identification of grooming conversations is crucial in preventing long-term harm to victims.However,research on grooming detection in South Korea remains limited,as existing models trained primarily on English text and fail to reflect the unique linguistic features of SNS conversations,leading to inaccurate classifications.To address these issues,this study proposes a novel framework that integrates optical character recognition(OCR)technology with KcELECTRA,a deep learning-based natural language processing(NLP)model that shows excellent performance in processing the colloquial Korean language.In the proposed framework,the KcELECTRA model is fine-tuned by an extensive dataset,including Korean social media conversations,Korean ethical verification data from AI-Hub,and Korean hate speech data from Hug-gingFace,to enable more accurate classification of text extracted from social media conversation images.Experimental results show that the proposed framework achieves an accuracy of 0.953,outperforming existing transformer-based models.Furthermore,OCR technology shows high accuracy in extracting text from images,demonstrating that the proposed framework is effective for online grooming detection.The proposed framework is expected to contribute to the more accurate detection of grooming text and the prevention of grooming-related crimes. 展开更多
关键词 Online grooming KcELECTRA natural language processing optical character recognition social networking service text classification
在线阅读 下载PDF
基于VB.NET和ArcEngine的县级年度变更建库软件设计与实现
4
作者 施评达 《资源导刊》 2025年第12期43-47,共5页
研究详细阐述了运用VB.NET与ArcEngine开发县级年度变更建库软件的过程,经深入分析业务需求,借助VB.NET的高效开发能力与ArcEngine的地理信息处理功能,构建涵盖数据管理、处理、查询统计等功能模块的软件系统,并通过应用示范,验证其建... 研究详细阐述了运用VB.NET与ArcEngine开发县级年度变更建库软件的过程,经深入分析业务需求,借助VB.NET的高效开发能力与ArcEngine的地理信息处理功能,构建涵盖数据管理、处理、查询统计等功能模块的软件系统,并通过应用示范,验证其建库效率与数据准确性,有力支撑了土地资源信息化管理。 展开更多
关键词 vb.net ARCENGINE 年度变更建库 增量更新 整图层更新
在线阅读 下载PDF
Upholding Academic Integrity amidst Advanced Language Models: Evaluating BiLSTM Networks with GloVe Embeddings for Detecting AI-Generated Scientific Abstracts
5
作者 Lilia-Eliana Popescu-Apreutesei Mihai-Sorin Iosupescu +1 位作者 Sabina Cristiana Necula Vasile-Daniel Pavaloaia 《Computers, Materials & Continua》 2025年第8期2605-2644,共40页
The increasing fluency of advanced language models,such as GPT-3.5,GPT-4,and the recently introduced DeepSeek,challenges the ability to distinguish between human-authored and AI-generated academic writing.This situati... The increasing fluency of advanced language models,such as GPT-3.5,GPT-4,and the recently introduced DeepSeek,challenges the ability to distinguish between human-authored and AI-generated academic writing.This situation is raising significant concerns regarding the integrity and authenticity of academic work.In light of the above,the current research evaluates the effectiveness of Bidirectional Long Short-TermMemory(BiLSTM)networks enhanced with pre-trained GloVe(Global Vectors for Word Representation)embeddings to detect AIgenerated scientific Abstracts drawn from the AI-GA(Artificial Intelligence Generated Abstracts)dataset.Two core BiLSTM variants were assessed:a single-layer approach and a dual-layer design,each tested under static or adaptive embeddings.The single-layer model achieved nearly 97%accuracy with trainable GloVe,occasionally surpassing the deeper model.Despite these gains,neither configuration fully matched the 98.7%benchmark set by an earlier LSTMWord2Vec pipeline.Some runs were over-fitted when embeddings were fine-tuned,whereas static embeddings offered a slightly lower yet stable accuracy of around 96%.This lingering gap reinforces a key ethical and procedural concern:relying solely on automated tools,such as Turnitin’s AI-detection features,to penalize individuals’risks and unjust outcomes.Misclassifications,whether legitimate work is misread as AI-generated or engineered text,evade detection,demonstrating that these classifiers should not stand as the sole arbiters of authenticity.Amore comprehensive approach is warranted,one which weaves model outputs into a systematic process supported by expert judgment and institutional guidelines designed to protect originality. 展开更多
关键词 AI-GA dataset bidirectional LSTM GloVe embeddings AI-generated text detection academic integrity deep learning OVERFITTING natural language processing
在线阅读 下载PDF
基于XLNet和多粒度对比学习的新闻主题文本分类方法 被引量:1
6
作者 陈敏 王雷春 +2 位作者 徐瑞 史含笑 徐渺 《郑州大学学报(理学版)》 CAS 北大核心 2025年第2期16-23,共8页
新闻主题文本内容简短却含义丰富,传统方法通常只考虑词粒度或句粒度向量中的一种进行研究,未能充分利用新闻主题文本不同粒度向量之间的关联信息。为深入挖掘文本的词向量和句向量间的依赖关系,提出一种基于XLNet和多粒度特征对比学习... 新闻主题文本内容简短却含义丰富,传统方法通常只考虑词粒度或句粒度向量中的一种进行研究,未能充分利用新闻主题文本不同粒度向量之间的关联信息。为深入挖掘文本的词向量和句向量间的依赖关系,提出一种基于XLNet和多粒度特征对比学习的新闻主题分类方法。首先,利用XLNet对新闻主题文本进行特征提取获得文本中词、句粒度的特征表示和潜在空间关系;然后,通过对比学习R-Drop策略生成不同粒度特征的正负样本对,以一定权重对文本的词向量-词向量、词向量-句向量和句向量-句向量进行特征相似度学习,使模型深入挖掘出字符属性和语句属性之间的关联信息,提升模型的表达能力。在THUCNews、Toutiao和SHNews数据集上进行实验,实验结果表明,与基准模型相比,所提方法在准确率和F 1值上都有更好的表现,在三个数据集上的F 1值分别达到了93.88%、90.08%、87.35%,验证了方法的有效性和合理性。 展开更多
关键词 自然语言处理 文本分类 新闻主题 XLnet 对比学习
在线阅读 下载PDF
一种基于预训练语言模型XLNet的测井曲线重构方法 被引量:1
7
作者 曹茂俊 赵宇杰 《计算机技术与发展》 2025年第2期183-190,共8页
在油田勘探开发过程中,测井曲线作为地球物理测井的第一手资料,能够真实反映地下空间的分布与特性。然而,在实际工作中,由于井壁垮塌和仪器故障等原因,部分测井数据常常出现失真或缺失。为解决这一问题,该文提出了一种基于预训练语言模... 在油田勘探开发过程中,测井曲线作为地球物理测井的第一手资料,能够真实反映地下空间的分布与特性。然而,在实际工作中,由于井壁垮塌和仪器故障等原因,部分测井数据常常出现失真或缺失。为解决这一问题,该文提出了一种基于预训练语言模型XLNet的测井曲线重构方法。该方法通过筛选地层地质岩性特征指数,获取高质量的训练样本,并将其作为预训练模型重构测井曲线的依据。构建并训练带有预训练权重信息的XLNet模型,使模型具备对复杂地层特性的理解和数据重构能力。在模型的构建与训练过程中,引入了预训练权重,并进一步结合了LoRA(Low-Rank Adaptation)模块,以充分利用测井曲线之间的高度依赖关系,进而辅助XLNet生成和补全失真或缺失的测井数据。与已知曲线重构模型:基于注意力表征的长短期记忆神经网络(LSTM-Attent)、双向门控神经网络(BiGRU)、TimesNet及XLNet相比,基于预训练语言模型XLNet-LoRA的测井曲线重构模型具有更高的预测准确性。 展开更多
关键词 测井曲线重构 深度学习 预训练语言模型 XLnet网络 LoRA机制
在线阅读 下载PDF
基于多模态融合大模型架构Agri-QA Net的作物知识问答系统
8
作者 吴华瑞 赵春江 李静晨 《智慧农业(中英文)》 2025年第1期1-10,共10页
[目的/意义]随着农业信息化和智能化的快速发展,多模态人机交互技术在农业领域的重要性日益凸显。本研究提出了一种基于多模态融合的大模型架构Agri-QA Net,旨在针对甘蓝作物的农业知识,设计多模态专业问答系统。[方法]该模型通过整合... [目的/意义]随着农业信息化和智能化的快速发展,多模态人机交互技术在农业领域的重要性日益凸显。本研究提出了一种基于多模态融合的大模型架构Agri-QA Net,旨在针对甘蓝作物的农业知识,设计多模态专业问答系统。[方法]该模型通过整合文本、音频和图片数据,利用预训练的BERT(Bidirectional Encoder Representations from Transformers)模型提取文本特征,声学模型提取音频特征,以及卷积神经网络提取图像特征,并采用基于Transformer的融合层来整合这些特征。此外,引入跨模态注意力机制和领域自适应技术,增强了模型对农业领域专业知识的理解和应用能力。本研究通过收集和预处理甘蓝种植相关的多模态数据,训练并优化了AgriQA Net模型。[结果和讨论]实验评估表明,该模型在甘蓝农业知识问答任务上表现出色,相较于传统的单模态或简单多模态模型,具有更高的准确率和更好的泛化能力。在多模态输入的支持下,其准确率达到了89.5%,精确率为87.9%,召回率为91.3%,F_(1)值为89.6%,均显著高于单一模态模型。[结论]案例研究展示了Agri-QA Net在实际农业场景中的应用效果,证明了其在帮助农民解决实际问题中的有效性。未来的工作将探索模型在更多农业场景中的应用,并进一步优化模型性能。 展开更多
关键词 多模态融合 人机交互 农业知识问答 甘蓝作物 大语言模型
在线阅读 下载PDF
基于XLNet—BiLSTM—AFF—CRF的谷物收割机械维修知识命名实体识别
9
作者 李先旺 刘赛虎 +1 位作者 黄忠祥 章霞东 《中国农机化学报》 北大核心 2025年第2期319-325,352,共8页
针对谷物收割机械维修实体识别过程中存在上下文语义特征缺失、长距离依赖信息不充足、实体复杂度较高等问题,提出一种引入注意力机制特征融合的谷物收割机械维修知识命名实体识别模型XLNet—BiLSTM—AFF—CRF。该模型采用基于Transfor... 针对谷物收割机械维修实体识别过程中存在上下文语义特征缺失、长距离依赖信息不充足、实体复杂度较高等问题,提出一种引入注意力机制特征融合的谷物收割机械维修知识命名实体识别模型XLNet—BiLSTM—AFF—CRF。该模型采用基于Transformer—XL的广义自回归XLNet预训练模型作为嵌入层提取字向量;然后使用双向长短时记忆网络(BiLSTM)获取上下文语义特征;利用注意力特征融合AFF将XLNet层输出与BiLSTM层输出进行组合,增强序列的语义信息;最后输入条件随机场CRF模型学习标注约束规则生成全局最优序列。在创建的维修语料库上展开试验,结果表明:所提模型的精确率、召回率和F1值分别为98.4%、97.6%和97.9%,均高于对比模型,验证所提模型的有效性。 展开更多
关键词 谷物收割机械 维修 命名实体识别 注意力机制 广义自回归预训练语言模型(XLnet)
在线阅读 下载PDF
VB族金属碳化物的原位自生扩散动力学
10
作者 符少龙 李蕾蕾 +1 位作者 史可 钟黎声 《当代化工研究》 2025年第4期44-46,共3页
在总结分析VB族金属及其碳化物的基本物理和化学性质的基础上,以碳原子扩散控制的碳化物原位自生过程为对象,研究温度、晶体缺陷、扩散介质等对扩散动力学过程的影响,并分析碳化物可能的生长机制。结果表明,VB族金属/铸铁扩散偶高温扩... 在总结分析VB族金属及其碳化物的基本物理和化学性质的基础上,以碳原子扩散控制的碳化物原位自生过程为对象,研究温度、晶体缺陷、扩散介质等对扩散动力学过程的影响,并分析碳化物可能的生长机制。结果表明,VB族金属/铸铁扩散偶高温扩散反应过程主要包含C和金属原子的扩散阶段和原位反应生成碳化物两个阶段。VB族碳化物的原位生成主要依赖元素扩散,其形成机制表现为共晶-析出机制。碳化物颗粒的生长过程中,奥兹瓦尔德熟化和取向连接生长两种机制共同作用决定碳化物颗粒的大小和形貌。 展开更多
关键词 vb族金属碳化物 原位反应 扩散动力学
在线阅读 下载PDF
基于NET core的水稻生产机械专业术语双料语言库系统研究
11
作者 李洁 《北方水稻》 2025年第4期159-164,共6页
水稻生产机械化技术正在逐渐走向国际化,而一个支持多语言的语言库系统可以帮助技术更好地传播和应用到不同国家或地区。为实现上述目的,设计基于NET core的水稻生产机械专业术语双料语言库系统。在收集到的水稻生产机械专业术语数据中... 水稻生产机械化技术正在逐渐走向国际化,而一个支持多语言的语言库系统可以帮助技术更好地传播和应用到不同国家或地区。为实现上述目的,设计基于NET core的水稻生产机械专业术语双料语言库系统。在收集到的水稻生产机械专业术语数据中,抽取目标双料语言信息,进而确定其功能性与非功能性需求,实现对水稻生产机械专业术语双料语言信息的传输需求分析。以NET core框架为基础,设计语言库更新模块与整合统计模块,完善水稻生产机械专业术语双料语言库系统的具体设计方法。实验结果表明,基于NET core开发的语言库系统具有更大的存储空间,能够快速实现中英文信息的切换与对照,方便水稻生产机械化技术的国际交流与合作。 展开更多
关键词 net core框架 水稻生产机械 专业术语 双料语言库 传输需求
在线阅读 下载PDF
Multi-scale context-aware network for continuous sign language recognition
12
作者 Senhua XUE Liqing GAO +1 位作者 Liang WAN Wei FENG 《虚拟现实与智能硬件(中英文)》 EI 2024年第4期323-337,共15页
The hands and face are the most important parts for expressing sign language morphemes in sign language videos.However,we find that existing Continuous Sign Language Recognition(CSLR)methods lack the mining of hand an... The hands and face are the most important parts for expressing sign language morphemes in sign language videos.However,we find that existing Continuous Sign Language Recognition(CSLR)methods lack the mining of hand and face information in visual backbones or use expensive and time-consuming external extractors to explore this information.In addition,the signs have different lengths,whereas previous CSLR methods typically use a fixed-length window to segment the video to capture sequential features and then perform global temporal modeling,which disturbs the perception of complete signs.In this study,we propose a Multi-Scale Context-Aware network(MSCA-Net)to solve the aforementioned problems.Our MSCA-Net contains two main modules:(1)Multi-Scale Motion Attention(MSMA),which uses the differences among frames to perceive information of the hands and face in multiple spatial scales,replacing the heavy feature extractors;and(2)Multi-Scale Temporal Modeling(MSTM),which explores crucial temporal information in the sign language video from different temporal scales.We conduct extensive experiments using three widely used sign language datasets,i.e.,RWTH-PHOENIX-Weather-2014,RWTH-PHOENIX-Weather-2014T,and CSL-Daily.The proposed MSCA-Net achieve state-of-the-art performance,demonstrating the effectiveness of our approach. 展开更多
关键词 Continuous sign language recognition Multi-scale motion attention Multi-scale temporal modeling
在线阅读 下载PDF
Smaller & Smarter: Score-Driven Network Chaining of Smaller Language Models
13
作者 Gunika Dhingra Siddansh Chawla +1 位作者 Vijay K. Madisetti Arshdeep Bahga 《Journal of Software Engineering and Applications》 2024年第1期23-42,共20页
With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily meas... With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily measured by the number of parameters, but also the subsequent escalation in computational demands, hardware and software prerequisites for training, all culminating in a substantial financial investment as well. In this paper, we present novel techniques like supervision, parallelization, and scoring functions to get better results out of chains of smaller language models, rather than relying solely on scaling up model size. Firstly, we propose an approach to quantify the performance of a Smaller Language Models (SLM) by introducing a corresponding supervisor model that incrementally corrects the encountered errors. Secondly, we propose an approach to utilize two smaller language models (in a network) performing the same task and retrieving the best relevant output from the two, ensuring peak performance for a specific task. Experimental evaluations establish the quantitative accuracy improvements on financial reasoning and arithmetic calculation tasks from utilizing techniques like supervisor models (in a network of model scenario), threshold scoring and parallel processing over a baseline study. 展开更多
关键词 Large language Models (LLMs) Smaller language Models (SLMs) FINANCE netWORKING Supervisor Model Scoring Function
在线阅读 下载PDF
基于VB程序的通信用光功率计自动化测试系统设计
14
作者 曹懋 于振钦 +2 位作者 许小挺 金溢文 杨元旭 《光纤与电缆及其应用技术》 2025年第4期34-37,40,共5页
针对光通信器件光功率检测效率低、人工记录误差率高等问题,设计了一种基于VB 6.0的通信用光功率计自动化测试系统。该系统通过RS232/GPIB双模通信架构实现光功率计与计算机的联动控制,集成双缓冲区数据采集机制与轻量化数据库设计。实... 针对光通信器件光功率检测效率低、人工记录误差率高等问题,设计了一种基于VB 6.0的通信用光功率计自动化测试系统。该系统通过RS232/GPIB双模通信架构实现光功率计与计算机的联动控制,集成双缓冲区数据采集机制与轻量化数据库设计。实验表明:系统单次测量周期缩短至0.8s(较人工操作提升6.5倍),数据记录错误率从2.7%降至0.05%,扩展不确定度为2.76%~3.04%(包含因子k=2),符合检定规程JJG 965—2013《通信用光功率计》的校准要求。该系统支持-40~85℃宽温环境,为光通信器件的批量检测提供了高效、可靠的解决方案。 展开更多
关键词 光功率计 自动化测试系统 vb 6.0程序 数据采集 不确定度分析
原文传递
二语写作研究的现状、反思与展望——基于Journal of Second Language Writing近十年载文分析
15
作者 孙云帆 孙玲 《西部学刊》 2025年第5期164-168,共5页
二语写作是二语习得研究领域的重要组成部分。运用CiteSpace软件对近十年发表在Journal of Second Language Writing的231篇实证研究论文进行可视化分析,研究发现:二语写作研究整体呈波动性上升趋势,研究规模较为稳定,研究关注度逐渐提... 二语写作是二语习得研究领域的重要组成部分。运用CiteSpace软件对近十年发表在Journal of Second Language Writing的231篇实证研究论文进行可视化分析,研究发现:二语写作研究整体呈波动性上升趋势,研究规模较为稳定,研究关注度逐渐提升;二语写作研究领域暂未形成明显的核心作者和机构的合作网络;研究主题主要聚焦二语写作教学方法的多元化、二语写作反馈的多焦点、二语写作评估与测试的科学化,以及学习者个体差异的多维影响等方面。基于此,提出未来该领域发展需加强学者、机构之间的相互合作;关注个体学习者写作过程的认知特征与情感因素,尤其重视青少年二语学习过程的研究;扩大二语写作纵向研究规模,推动研究的深入发展。 展开更多
关键词 二语写作研究 Journal of Second language Writing 可视化分析 现状 反思与展望
在线阅读 下载PDF
Large language models for robotics:Opportunities,challenges,and perspectives 被引量:3
16
作者 Jiaqi Wang Enze Shi +7 位作者 Huawen Hu Chong Ma Yiheng Liu Xuhui Wang Yincheng Yao Xuan Liu Bao Ge Shu Zhang 《Journal of Automation and Intelligence》 2025年第1期52-64,共13页
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua... Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction. 展开更多
关键词 Large language models ROBOTICS Generative AI Embodied intelligence
在线阅读 下载PDF
Evaluating research quality with Large Language Models:An analysis of ChatGPT’s effectiveness with different settings and inputs 被引量:1
17
作者 Mike Thelwall 《Journal of Data and Information Science》 2025年第1期7-25,共19页
Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether ... Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether Large Language Models(LLMs)can play a role in this process.Design/methodology/approach:This article assesses which ChatGPT inputs(full text without tables,figures,and references;title and abstract;title only)produce better quality score estimates,and the extent to which scores are affected by ChatGPT models and system prompts.Findings:The optimal input is the article title and abstract,with average ChatGPT scores based on these(30 iterations on a dataset of 51 papers)correlating at 0.67 with human scores,the highest ever reported.ChatGPT 4o is slightly better than 3.5-turbo(0.66),and 4o-mini(0.66).Research limitations:The data is a convenience sample of the work of a single author,it only includes one field,and the scores are self-evaluations.Practical implications:The results suggest that article full texts might confuse LLM research quality evaluations,even though complex system instructions for the task are more effective than simple ones.Thus,whilst abstracts contain insufficient information for a thorough assessment of rigour,they may contain strong pointers about originality and significance.Finally,linear regression can be used to convert the model scores into the human scale scores,which is 31%more accurate than guessing.Originality/value:This is the first systematic comparison of the impact of different prompts,parameters and inputs for ChatGPT research quality evaluations. 展开更多
关键词 ChatGPT Large language Models LLMs SCIENTOMETRICS Research Assessment
在线阅读 下载PDF
On large language models safety,security,and privacy:A survey 被引量:1
18
作者 Ran Zhang Hong-Wei Li +2 位作者 Xin-Yuan Qian Wen-Bo Jiang Han-Xiao Chen 《Journal of Electronic Science and Technology》 2025年第1期1-21,共21页
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.De... The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.Despite their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant challenges.These challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy leakage.Previous works often conflated safety issues with security concerns.In contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of LLMs.Building on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in LLMs.Additionally,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats. 展开更多
关键词 Large language models Privacy issues Safety issues Security issues
在线阅读 下载PDF
融合Finetuned-BERTopic和大模型的技术主题识别方法研究 被引量:3
19
作者 张凯 杨敏纳 隗玲 《情报理论与实践》 北大核心 2025年第3期189-198,共10页
[目的/意义]文章提出一种结合科技文本预训练语言模型微调的BERTopic和大模型的技术主题识别方法,深入学习科技文本内容中蕴含的语义特征,从非结构化的科技文本中识别技术主题,并对其进行自动解读以归纳生成主题标签,减少人工干预,进一... [目的/意义]文章提出一种结合科技文本预训练语言模型微调的BERTopic和大模型的技术主题识别方法,深入学习科技文本内容中蕴含的语义特征,从非结构化的科技文本中识别技术主题,并对其进行自动解读以归纳生成主题标签,减少人工干预,进一步提升技术主题识别的确度与效度,为扩展和丰富技术主题识别研究方法体系提供理论与工具支持。[方法/过程]采用PAT SPECTER预训练语言模型对科技文本进行向量化表征,结合KeyBERT构建Finetuned-BERTopic模型,建模技术词汇间的语义关联关系,抽取特定领域的技术术语,以技术术语为表征单位对科技文本中蕴含的技术主题进行识别;使用GPT-4o大模型和提示工程对上述识别的技术主题内容进行自动评价并解读生成主题标签;在此基础上,以生成式人工智能领域为例,验证本文方法的有效性。[结果/结论]实验验证表明,对比LDA主题模型、Top2Vec、BERTopic等模型,文章提出的方法有效提高了技术主题识别的准确性,且可显著减少人工干预,实现更高效的技术主题发现。 展开更多
关键词 科技文本 技术主题识别 微调的BERTopic 大语言模型 生成式人工智能
原文传递
Diffusion-based generative drug-like molecular editing with chemical natural language 被引量:1
20
作者 Jianmin Wang Peng Zhou +6 位作者 Zixu Wang Wei Long Yangyang Chen Kyoung Tai No Dongsheng Ouyang Jiashun Mao Xiangxiang Zeng 《Journal of Pharmaceutical Analysis》 2025年第6期1215-1225,共11页
Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited ... Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited research on molecular sequence diffusion models.The International Union of Pure and Applied Chemistry(IUPAC)names are more akin to chemical natural language than the simplified molecular input line entry system(SMILES)for organic compounds.In this work,we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language(SMILES)and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language.We propose DiffIUPAC,a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings.Evaluation results demonstrate that our model out-performs existing methods and successfully captures the semantic rules of both chemical languages.Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints.Additionally,to illustrate the model’s applicability in drug design,we conducted case studies in functional group editing,analogue design and linker design. 展开更多
关键词 Diffusion model IUPAC Molecular generative model Chemical natural language Transformer
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部