V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for N...V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for NOx conversion using NH3 as the reductant. Hydrothermal ageing decreased the NOx conversion of V2O5/WO3‐TiO2 catalyst severely over the entire measured tem‐perature range. Interestingly, the NH3‐SCR activity of the silica‐modified catalyst at 220–480℃ is enhanced after ageing. The catalysts were characterized by X‐ray diffraction, nitrogen adsorption, X‐ray fluorescence, Raman spectroscopy, H2 temperature‐programmed reduction, and NH3 temper‐ature‐programmed desorption. The addition of silica inhibited the phase transition from anatase to rutile titania, growth of TiO2 crystallite size and shrinkage of catalyst surface area. Consequently, the vanadia species remained highly dispersed and the hydrothermal stability of the V2O5/WO3‐TiO2 catalyst was significantly improved.展开更多
采用超声波浸渍法、传统浸渍法制备一系列V2O5-WO3/TiO2催化剂,对催化剂的反应活性进行考察。研究表明:与普通浸渍法相比,超声波浸渍法可以提高催化剂的脱硝效率,拓宽催化反应的温度窗口。超声波浸渍时间和超声波功率对催化剂的反应活...采用超声波浸渍法、传统浸渍法制备一系列V2O5-WO3/TiO2催化剂,对催化剂的反应活性进行考察。研究表明:与普通浸渍法相比,超声波浸渍法可以提高催化剂的脱硝效率,拓宽催化反应的温度窗口。超声波浸渍时间和超声波功率对催化剂的反应活性有较大影响。浸渍时间增加,催化剂脱硝效率也随之提高。超声波功率增加,催化剂的脱硝效率先提高后降低。在超声波频率28 kHz,超声波功率400 W,超声作用时间1.5 h,超声水粉比为100 mL H2O/10 g TiO2的条件下,制得的V2O5-WO3/TiO2脱硝催化剂脱硝效率接近100%。通过SEM对制备的催化剂进行表征,超声波浸渍法制备的催化剂的活性成分在载体上分散更加均匀。展开更多
基金supported by the National Natural Science Foundation of China (51372137)the National High Technology Research and Development Program of China (863 Program,2015AA034603)~~
文摘V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for NOx conversion using NH3 as the reductant. Hydrothermal ageing decreased the NOx conversion of V2O5/WO3‐TiO2 catalyst severely over the entire measured tem‐perature range. Interestingly, the NH3‐SCR activity of the silica‐modified catalyst at 220–480℃ is enhanced after ageing. The catalysts were characterized by X‐ray diffraction, nitrogen adsorption, X‐ray fluorescence, Raman spectroscopy, H2 temperature‐programmed reduction, and NH3 temper‐ature‐programmed desorption. The addition of silica inhibited the phase transition from anatase to rutile titania, growth of TiO2 crystallite size and shrinkage of catalyst surface area. Consequently, the vanadia species remained highly dispersed and the hydrothermal stability of the V2O5/WO3‐TiO2 catalyst was significantly improved.
基金Supported by Fundamental Research Funds for Central Universities(HEUCF201403002)Advanced Technique Project Funds of the Manufacture and Information Ministry
文摘采用超声波浸渍法、传统浸渍法制备一系列V2O5-WO3/TiO2催化剂,对催化剂的反应活性进行考察。研究表明:与普通浸渍法相比,超声波浸渍法可以提高催化剂的脱硝效率,拓宽催化反应的温度窗口。超声波浸渍时间和超声波功率对催化剂的反应活性有较大影响。浸渍时间增加,催化剂脱硝效率也随之提高。超声波功率增加,催化剂的脱硝效率先提高后降低。在超声波频率28 kHz,超声波功率400 W,超声作用时间1.5 h,超声水粉比为100 mL H2O/10 g TiO2的条件下,制得的V2O5-WO3/TiO2脱硝催化剂脱硝效率接近100%。通过SEM对制备的催化剂进行表征,超声波浸渍法制备的催化剂的活性成分在载体上分散更加均匀。