The mixed L1/H-infinity control problem for a class of uncertain linear singular systems is considered using a matrix inequality approach. The purpose is to design a state feedback control law such that the resultant ...The mixed L1/H-infinity control problem for a class of uncertain linear singular systems is considered using a matrix inequality approach. The purpose is to design a state feedback control law such that the resultant closed-loop system is regular, impulse-free, stable and satisfies some given mixed L1/H-infinity performance. A sufficient condition for the existence of such control law is given in terms of a set of matrix inequalities by the introduction of inescapable set and *-norm. When these matrix inequalities are feasible, an explicit expression of the desired state feedback control law is given. A numerical example is used to demonstrate the applicability of the proposed approach.展开更多
This paper addresses the robust input-output energy decoupling problem for uncertain singular systems in which all parameter matrices except E exist as time-varying uncertainties. By means of linear matrix inequalitie...This paper addresses the robust input-output energy decoupling problem for uncertain singular systems in which all parameter matrices except E exist as time-varying uncertainties. By means of linear matrix inequalities (LMIs), sufficient conditions are derived for the existence of linear state feedback and input transformation control laws, such that the resulting closed-loop uncertain singular system is generalized quadratically stable and the energy of every input controls mainly the energy of a corresponding output, and influences the energy of other outputs as weakly as possible. Keywords Uncertain singular systems - generalized quadratical stability - input-output energy decoupling - linear matrix inequality (LMI) Xin-Zhuang Dong graduated from the Institute of Information Engineering of People’s Liberation Army, China, in 1994. She received the M. S. degree from the Institute of Electronic Technology of People’s Liberation Army, in 1998 and the Ph.D. degree from Northeastern University, China, in 2004. She is currently a post-doctoral fellow at the Key Laboratory of Systems and Control, CAS.Her research interests include singular and nonlinear systems, especially the control of singular systems such as H ∞ control, passive control and dissipative control. Qing-Ling Zhang received the Ph.D. degree from Northeastern University, China, in 1995. He is currently a professor with the Institute of Systems Science, Northeastern University. His research interests include singular systems, fuzzy systems, decentralized control, and H 2/H ∞ control.展开更多
基金supported by the National Natural Science Foundation of China (No.60774044)the Professional Research Foundation for Advanced Talents of Jiangsu University (No.07JDG037)+2 种基金the Natural Science Fund for Colleges and Universities in Jiangsu Province (No.08KJ510010)the Open Project of National Key Laboratory of Industrial Control Technology of Zhejiang University (No.ICT0910)Qing Lan Project of Jiangsu Province
文摘The mixed L1/H-infinity control problem for a class of uncertain linear singular systems is considered using a matrix inequality approach. The purpose is to design a state feedback control law such that the resultant closed-loop system is regular, impulse-free, stable and satisfies some given mixed L1/H-infinity performance. A sufficient condition for the existence of such control law is given in terms of a set of matrix inequalities by the introduction of inescapable set and *-norm. When these matrix inequalities are feasible, an explicit expression of the desired state feedback control law is given. A numerical example is used to demonstrate the applicability of the proposed approach.
文摘This paper addresses the robust input-output energy decoupling problem for uncertain singular systems in which all parameter matrices except E exist as time-varying uncertainties. By means of linear matrix inequalities (LMIs), sufficient conditions are derived for the existence of linear state feedback and input transformation control laws, such that the resulting closed-loop uncertain singular system is generalized quadratically stable and the energy of every input controls mainly the energy of a corresponding output, and influences the energy of other outputs as weakly as possible. Keywords Uncertain singular systems - generalized quadratical stability - input-output energy decoupling - linear matrix inequality (LMI) Xin-Zhuang Dong graduated from the Institute of Information Engineering of People’s Liberation Army, China, in 1994. She received the M. S. degree from the Institute of Electronic Technology of People’s Liberation Army, in 1998 and the Ph.D. degree from Northeastern University, China, in 2004. She is currently a post-doctoral fellow at the Key Laboratory of Systems and Control, CAS.Her research interests include singular and nonlinear systems, especially the control of singular systems such as H ∞ control, passive control and dissipative control. Qing-Ling Zhang received the Ph.D. degree from Northeastern University, China, in 1995. He is currently a professor with the Institute of Systems Science, Northeastern University. His research interests include singular systems, fuzzy systems, decentralized control, and H 2/H ∞ control.
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60474022)教育部博士点专项科研基金资助项目(Doctoral Fund of Ministry of Education of China under Grant No.20060613007)