A novel substrate integrated microstrip to ultra-thin cavity filter transition operating in the W-band is proposed in this letter.The structure is a new method of connecting microstrip circuits and waveguide filters,a...A novel substrate integrated microstrip to ultra-thin cavity filter transition operating in the W-band is proposed in this letter.The structure is a new method of connecting microstrip circuits and waveguide filters,and this new structure enables a planar integrated transition from microstrip lines to ultra-thin cavity filters,thereby reducing the size of the transition structure and achieving miniaturization.The structure includes a conventional tapered microstrip transition structure,which guides the electromagnetic field from the microstrip line to the reduced-height dielectric-filled waveguide,and an air-filled matching cavity which is placed between the dielectric-filled waveguide and the ultra-thin cavity filter.The heights of the microstrip line,the dielectric-filled waveguide and the ultra-thin cavity filter are the same,enabling seamless integration within a planar radio-frequency(RF)circuit.To facilitate testing,mature finline transition structures are integrated at both ends of the microstrip line during fabrications.The simulation results of the fabricated microstrip to ultra-thin cavity filter transition with the finline transition structure,with a passband of 91.5-96.5 GHz,has an insertion loss of less than 1.9 dB and a return loss lower than-20 dB.And the whole structure has also been measured which achieves an insertion loss less than 2.6 dB and a return loss lower than-15 dB within the filter's passband,including the additional insertion loss introduced by the finline transitions.Finally,a W-band compact up-conversion module is designed,and the test results show that after using the proposed structure,the module achieves 95 dBc suppression of the 84 GHz local oscillator.It is also demonstrated that the structure proposed in this letter achieves miniaturization of the system integration without compromising the filter performance.展开更多
The equimolar NbZrTi medium-entropy alloy(MEA)has attracted attention due to its excellent comprehensive mechanical properties.In this study,the designed body-centered cubic NbZrTiAl_(4)(atomic percent,at%)MEA by Al a...The equimolar NbZrTi medium-entropy alloy(MEA)has attracted attention due to its excellent comprehensive mechanical properties.In this study,the designed body-centered cubic NbZrTiAl_(4)(atomic percent,at%)MEA by Al addition,having a superplastic extensibility of~5000%under cold rolling,enables directly fabricated ultrathin foils with a thickness down to~0.2 mm without any treatments.Particularly,the annealed NbZrTiAl_(4) MEA foils,containing a coherent nanoscale B2,exhibit an ultrahigh yield strength of up to~1130 MPa,which even surpasses the bulk counterpart,while maintaining a good fracture elongation of up to~14%.The Al addition induced a stronger solid solution strengthening and fine-grain strengthening in the foils.Complex dislocation interactions and dislocation–B2 interactions promoted a dynamical formation of dislocation bands,which yielded work-hardening ability and tensile ductility.These findings provide a novel strategy for the design of ultrathin refractory medium-entropy foils to break through their performance limits at ultrahigh temperatures and guide the design of high-performance lightweight foils for structural applications.展开更多
The textured roll and polished roll were applied instead of the ground roll in a 20-high mill to conduct two-pass rolling of 316L stainless steel strip with thickness of 0.027 mm.After the two-pass rolling with the te...The textured roll and polished roll were applied instead of the ground roll in a 20-high mill to conduct two-pass rolling of 316L stainless steel strip with thickness of 0.027 mm.After the two-pass rolling with the textured roll and polished roll(TPR),the surface roughness of the strip is dramatically reduced,and the surface topographical anisotropy index is diminished to 30.9%of the initial strip.Comparing with the strip rolled using the ground roll in both passes(GGR),the elongation of TPR rolled strip is obviously improved,and the mechanical property anisotropy is greatly weakened.The anisotropy index of tensile strength and elongation are 42.58%and 52.59%of that of GGR rolled strip,which is mainly attributed to the significant decrease of the texture intensity of the strip by TPR process.The results indicate that TPR process can obtain the stainless steel ultra-thin strip with smooth and uniform surface topography and good mechanical properties.展开更多
Modulating the interface between the electron transport layer(ETL)and perovskite to minimize interfacial recombination is pivotal for developing efficient and stable perovskite solar cells.Here,we introduce an ultra-t...Modulating the interface between the electron transport layer(ETL)and perovskite to minimize interfacial recombination is pivotal for developing efficient and stable perovskite solar cells.Here,we introduce an ultra-thin ZrO_(2)insulating interface layer onto the inner surface of the mesoporous TiO_(2)ETL via the chemical bath deposition in the zirconium n-butoxide solution,which alters the interface characteristics between TiO_(2)and perovskite for the printable hole-conductor-free mesoscopic perovskite solar cells(p-MPSCs).The insulating ZrO_(2)interface layer reduces interface defects and suppresses interfacial non-radiative recombination.Furthermore,the ZrO_(2)interface layer improves the wettability of the mesoporous TiO_(2)ETL,which favors the crystallization of perovskite within the mesoporous scaffold.Meanwhile,the device performance presents thickness dependence on the interface layer.While increased thickness improves the open-circuit voltage,excessive thickness negatively impacts both the short-circuit current density and fill factor.Consequently,an improved power conversion efficiency of 19.9% was achieved for p-MPSCs with the ZrO_(2)interface layer at its optimized thickness.展开更多
A novel mesa ultra-thin base AlGaAs/GaAs HBT is designed and fabricated with wet chemical selective etch technique and monitor electrode technique. It has a particular and obvious voltage-controlled NDR whose PVCR is ...A novel mesa ultra-thin base AlGaAs/GaAs HBT is designed and fabricated with wet chemical selective etch technique and monitor electrode technique. It has a particular and obvious voltage-controlled NDR whose PVCR is larger than 120. By use of device simulation,the cause of NDR is that increasing collector voltage makes the ultrathin base reach through and the device transforms from a bipolar state to a bulk barrier state. In addition, the simulated cutoff frequency is about 60-80GHz.展开更多
In many fields of high-tech industry the ultra-t hi n wall parts are employed. In this paper the experiments were carried out to dis cuss the surface microstructure of the camera’s guided drawtube by applying ult ras...In many fields of high-tech industry the ultra-t hi n wall parts are employed. In this paper the experiments were carried out to dis cuss the surface microstructure of the camera’s guided drawtube by applying ult rasonic vibration cutting device to the traditional lathe. The influence rule of the cutting condition on the surface roughness was put forward, which was drawn by comparing the ultrasonic cutting with the common cutting by use of the cemen ted carbide tool and the polycrystalline diamond (PCD) tool. The test results sh owed that the ultrasonic cutting performs better than the common cutting in the same condition. According to the test results analyzing, the surface characteriz ation is influenced clearly by the rigidity of the acoustic system and the machi ne tool, as well the setting height of the tool tip. Otherwise, the dense regula r low frequency vibration ripples will be scraped on the machined surface. When the tool tip is set higher than the rotating center of the work piece by three t imes of the amplitude of ultrasonic vibration, the vibration ripples behave alig ht; they turn light and shade alternatively when the tool tip is lower than the rotating center of the work piece by three times of the amplitude of ultrasonic vibration. According to the test result analyzing, the following conclusions are put forward: 1) The surface roughness in ultrasonic cutting is better than that in common cutting. Under a one third critical cutting velocity, the value of th e surface roughness in ultrasonic cutting rise slightly along with the cutting v elocity, while in common cutting it decreases contrast to the cutting velocity; the curves of the surface roughness in ultrasonic cutting and common cutting see m to be alike, both increase along with the feed rate and the cutting depth, but the value in ultrasonic cutting is smaller in the same condition.2) The influen ce of the coolant on the surface roughness cannot be ignored. The kerosene can b e employed to improve the surface roughness in ultrasonic machining.3) In ultras onic cutting process of aluminum alloy ultra-thin wall work piece, the PCD tool performs better than the cemented carbide tools.4) The vibration ripples result from the not enough rigidity of the acoustic system and the improper setting he ight of the tool tip. The departure of the tool tip from the rotating center of the work piece to some extent causes the vibration ripples on the machined surfa ce.展开更多
In this study, high- and low-grade grain-oriented electrical steels were used as the initial materials to produce 0.08-mm-thick sheet with one-step cold-rolling method. Electron backscattering diffraction analysis tec...In this study, high- and low-grade grain-oriented electrical steels were used as the initial materials to produce 0.08-mm-thick sheet with one-step cold-rolling method. Electron backscattering diffraction analysis technique and X-ray diffraction texture analysis technique were adopted to investigate the effect of initial Goss texture sharpness on texture evolution and magnetic properties of ultra-thin grain-oriented electrical steel. The results showed that primary recrystal- lization and secondary recrystallization were the main processes that occurred during annealing. The induced factors for secondary recrystallization of two grades samples were not Consistent. The high-grade samples presented texture induction mechanism, while the low-grade samples revealed strong surface-energy induction mechanism. The initial Goss texture sharpness had a great impact on texture evolution and magnetic properties of ultra-thin grain-oriented electrical steel. The Goss texture component formed after primary recrystallization was stronger, and better magnetic properties were obtained at low frequencies. For low-grade samples, secondary recrystallization enhanced the intensity of Goss texture, and both grain size and texture contributed to better high-frequency magnetic properties after secondary recrystallization. By controlling the annealing process, the magnetic properties of low-grade products could be significantly improved, thus achieving conversion from low-grade to high-grade products.展开更多
Oxygen vacancy plays vital roles in regulating the electronic and charge distribution of the oxygen deficient materials.Herein,abundant oxygen vacancies are created during assembling the two-dimensional(2D)ultra-thin ...Oxygen vacancy plays vital roles in regulating the electronic and charge distribution of the oxygen deficient materials.Herein,abundant oxygen vacancies are created during assembling the two-dimensional(2D)ultra-thin Bi_(2)MoO_(6) nanoflakes into three dimensional(3D)Bi_(2)MoO_(6) nanospheres,resulting in significantly improved performance for photocatalytical conversion of CO_(2) into liquid hydrocarbons.The increased performance is contributed by two primary sites,namely the abundant oxygen vacancy and the exposed molybdenum(Mo)atom induced by oxygen-migration,as revealed by the theoretical calculation.The oxygen vacancy(Ov)and uncovered Mo atom serving as dual binding sites for trapping CO_(2) molecules render the synchronous fixation-reduction process,resulting in the decline of activation energy for CO_(2) reduction from 2.15 eV on bulk Bi_(2)MoO_(6) to 1.42 eV on Ov-rich Bi_(2)MoO_(6).Such a striking decrease in the activation energy induces the efficient selective generation of liquid hydrocarbons,especially the methanol(C_(2)H_(5) OH)and ethanol(CH_(3) OH).The yields of CH_(3) OH and C_(2)H_(5) OH over the optimal Ov-Bi_(2)MoO_(6) is high up to 106.5 and 10.3μmol g^(-1) respectively,greatly outperforming that on the Bulk-Bi_(2)MoO_(6).展开更多
Carbonaceous materials have been regarded as highly promising anode candidates for potassium storage with their cost-effectiveness and environmental benignity.However,low specific capacity and difficulty in large-scal...Carbonaceous materials have been regarded as highly promising anode candidates for potassium storage with their cost-effectiveness and environmental benignity.However,low specific capacity and difficulty in large-scale synthesis largely hinder their further development.Herein,a thermal-induced potassium–carbon alloy phase(K_(x)C_(y))with the expanded interlayer spacing strategy is first put forward.Through in situ high-temperature X-ray diffraction,a K_(2)C_(2) phase is evoked by thermal energy during the in-situ carbonization process of carbon quantum dots intermediate derived from potassium-containing precursors,whereas no lithium or sodium–carbon alloy phase is observed from lithium/sodium-containing precursors.The asobtained ultra-thin carbon nanosheets achieve adjustable layer spacing,preparation in bulk,delivering reversible potassium storage of 403.4 mAh g^(−1) at 100 mA g^(−1) and 161.2 mAh g^(−1) even at 5.0 A g^(−1),which is one of the most impressive K-storage performances reported so far with great potential application.Furthermore,the assembled potassium-ion hybrid capacitor by combining the impressive CFMs-900 anode with the three-dimensional framework-activated carbon delivers a high energy-power density of 251.7 Wh kg^(−1) at 250Wkg^(−1) with long-term stability.This study opens a scalable avenue to realize the expanded interlayer spacing,which can be extended to other multicarboxyl potassium salts and can provide approach for the design of high-performance carbon anode materials for potassium storage.展开更多
Monte Carlo simulations reveal considerable straggling of energy loss by the same ions with the same energy in fully-depleted silicon-on-insulator (FDSOI) devices with ultra-thin sensitive silicon layers down to 2.5...Monte Carlo simulations reveal considerable straggling of energy loss by the same ions with the same energy in fully-depleted silicon-on-insulator (FDSOI) devices with ultra-thin sensitive silicon layers down to 2.5 rim. The absolute straggling of deposited energy decreases with decreasing thickness of the active silicon layer. While the relative straggling increases gradually with decreasing thickness of silicon films and exhibits a sharp rise as the thickness of the silicon film descends below a threshold value of 50 nm, with the dispersion of deposited energy ascending above ~10%. Ion species and energy dependence of the energy-loss straggling are also investigated. For a given beam, the dispersion of deposited energy results in large uncertainty on the actual linear energy transfer (LET) of incident ions, and thus single event effect (SEE) responses, which pose great challenges for traditional error rate prediction methods.展开更多
The Hi-B silicon steels were cold rolled by cross shear rolling (CSR) with different mismatch speed ratio(MSR)s and conventional rolling(CR) respectively, followed by primary recrystallization annealing. The effects o...The Hi-B silicon steels were cold rolled by cross shear rolling (CSR) with different mismatch speed ratio(MSR)s and conventional rolling(CR) respectively, followed by primary recrystallization annealing. The effects of MSR and annealing temperature on magnetic properties of ultra-thin grain oriented silicon steel were analyzed. Experimental results show that, with the increase of MSR, the magnetic properties can be remarkably improved. The higher the annealing temperature is, the higher the magnetic induction and the lower the iron loss in ultra-thin silicon steel is.展开更多
In recent years,Cu_(2)ZnSnS_(4)(CZTS)semiconductor materials have received intensive attention in the field of thin-film solar cells owing to its non-toxic and low-cost elements.In this work,double-pressure sputtering...In recent years,Cu_(2)ZnSnS_(4)(CZTS)semiconductor materials have received intensive attention in the field of thin-film solar cells owing to its non-toxic and low-cost elements.In this work,double-pressure sputtering technology is applied to obtain highly efficient and ultra-thin(-450 nm)pure Cu_(2)ZnSnS_(4)(CZTS)solar cell.Using mixed materials with sulfides and copper powder as a quaternary target via spark plasma sintering(SPS)method and adopting double-layer sputtering(high+low pressure),a highly adhesive and large-grained CZTS thin film is achieved.As a result,the damage to the surface of Mo contact is decreased so that the reflectivity of incident light can be improved.Moreover,the composition of CZTS film was more uniform and the secondary phase separation at the Mo interface was reduced.Therefore,the interface defect state and deep level defect density in corresponding device with double-pressure is reduced and the ratio of depletion thickness to absorption layer thickness can reached to 0.58,which promoted the collection of photogenerated carriers.Finally,an efficiency of 9.3%for ultra-thin(~450 nm)CZTS film solar cell is obtained.展开更多
Electrochemical behaviour and passive film characteristics of an ultra-thin 316 L foil with a thickness of20μm in 3.5 wt.%NaCl solution were investigated using multiple techniques,focusing on the effect of microstruc...Electrochemical behaviour and passive film characteristics of an ultra-thin 316 L foil with a thickness of20μm in 3.5 wt.%NaCl solution were investigated using multiple techniques,focusing on the effect of microstructure,the applied potential,and the pH of the solution.The microstructure contains mainly fine grains(~4μm)with high-angle boundaries and preferential orientation of(220),and no MnS inclusion was detected.The electrochemical measurements show a significantly higher breakdown potential and lower passive current density for the 316 L foil than traditional wrought 316 L.The surface analyses using angle-resolved X-ray photoelectron spectroscopy(ARXPS)and time-of-flight secondary ion mass spectroscopy(TOF-SIMS)reveal that,compared to the wrought material,both the inner and out parts of the passive film on the 316 L foil are more enriched in Cr-and Mo-oxides.The microstructure favourable for elemental diffusion and the absence of MnS inclusion facilitate the formation of a continuous compact Cr-and Mo-rich passive film,which effectively retards corrosion in NaCl solution and remains stable in acidic solution(pH 2)or at high polarised potential up to 600 mV vs Ag/AgCl.展开更多
Structural metallic materials with excellent functional performance and lightweight features have always been the goal of material scientists’ pursuit.In this work,laminated metal composites of different thicknesses(...Structural metallic materials with excellent functional performance and lightweight features have always been the goal of material scientists’ pursuit.In this work,laminated metal composites of different thicknesses(less than 0.4 mm) composed of structural materials with great differences in deformation ability were successfully fabricated via a novel processing procedure.Ultra-high strength and excellent soft magnetic properties were combined perfectly in the ultra-thin and super-light laminated metal composite strips due to unique structural design and essential attributes of the initial materials.These results emphasize the significant potential application value of the ultra-thin laminated metal composites in the field of structural and functional integration.展开更多
In the paper, the experimental researches were carr ie d out to discuss the roundness forming rule and the influence of cutting paramet ers on roundness by ultrasonic vibration cutting of the camera’s guiding drawtu ...In the paper, the experimental researches were carr ie d out to discuss the roundness forming rule and the influence of cutting paramet ers on roundness by ultrasonic vibration cutting of the camera’s guiding drawtu be with 47.75 mm diameter and 0.6~1.5 mm wall thickness. The research results s h ow that the roundness error of ultra-thin wall parts in ultrasonic vibration cu tting is only one third of that in common cutting. The relations between the rou ndness error and the cutting parameters behave as: (1) The roundness error in co mmon cutting decreases gradually with the rise of cutting speed, while in ultras onic cutting, the roundness changes not obviously till the cutting speed is up t o a value, which is nearly equal to one third of the critical velocity. Then the roundness of workpiece will begin to increase slowly. (2) The roundness error i ncreases along with the feed rate both in common cutting and ultrasonic cutting. (3) Within the range of cutting depth in experiment, the influence of cutting d epth on the roundness error is more obvious in common cutting than that in ultra sonic vibration cutting. The conclusions are useful in machining such precise ul tra-thin wall parts. According to the tests, the following conclusions can be o btained: 1) Compared with common cutting, ultrasonic cutting can decrease effect ively roundness error of the workpiece. Under the same condition, the roundness error of the ultra-thin wall part in ultrasonic turning is about one third of t hat in common cutting. 2) In common cutting, cutting depth and feed rate have mu ch influence on the roundness and the influence of cutting velocity is little. W hile in ultrasonic cutting, the roundness was influenced heavily only when feed rate is more than 0.1 mm/r and cutting speed is more than 1/3 of the critical ro tation speed, cutting depth has little influence on the roundness in the experim ent. 3) Kerosene-oil is an optimum cutting fluid in machining ultra-thin wall workpiece. 4) To machine the ultra-thin wall precision part, ultrasonic cutting is the perfect method which can decrease the roundness error effectively an d ensure high quality of the surface.展开更多
Circularly polarized (CP) lens antenna has been applied to numerous wireless communication systems based on its unique advantages such as high antenna gain, low manufacturing cost, especially stable data transmissio...Circularly polarized (CP) lens antenna has been applied to numerous wireless communication systems based on its unique advantages such as high antenna gain, low manufacturing cost, especially stable data transmission between the transmitter and the receiver. Unfortunately, current available CP lens antennas mostly suffer from high profile, low aperture efficiency as well as complex design. In this paper, we propose an ultra-thin CP lens antenna based on the designed single- layered Pancharatnam-Berry (PB) transparent metasurface with focusing property. The PB metasurface exhibits a high transmissivity, which ensures a high efficiency of the focusing property. Launched the metasurface with a CP patch antenna at its focal point, a low-profile lens antenna is simulated and measured. The experimental results show that our lens antenna exhibits a series of advantages including high radiation gain of 20.7 dB, aperture efficiency better than 41.3%, and also narrow half power beam width (HPBW) of 13°at about 14GHz. Our finding opens a door to realize ultra-thin transparent metasurface with other functionalities or at other working frequencies.展开更多
The conduction mechanism of stress induced leakage current (SILC) through 2nm gate oxide is studied over a gate voltage range between 1.7V and stress voltage under constant voltage stress (CVS). The simulation res...The conduction mechanism of stress induced leakage current (SILC) through 2nm gate oxide is studied over a gate voltage range between 1.7V and stress voltage under constant voltage stress (CVS). The simulation results show that the SILC is formed by trap-assisted tunnelling (TAT) process which is dominated by oxide traps induced by high field stresses. Their energy levels obtained by this work are approximately 1.9eV from the oxide conduction band, and the traps are believed to be the oxygen-related donor-like defects induced by high field stresses. The dependence of the trap density on stress time and oxide electric field is also investigated.展开更多
A Monte Carlo Potts model was developed to simulate the recrystallization process of a cold-rolled ultra-thin grain-oriented silicon steel.The orientation and image quality data from electron backscatter diffraction m...A Monte Carlo Potts model was developed to simulate the recrystallization process of a cold-rolled ultra-thin grain-oriented silicon steel.The orientation and image quality data from electron backscatter diffraction measurements were used as input information for simulation.Three types of nucleation mechanisms,namely,random nucleation,high-stored-energy site nucleation(HSEN),and high-angle boundary nucleation(HABN),were considered for simulation.In particular,the nucleation and growth behaviors of Goss-oriented({011}<100>)grains were investigated.Results showed that Goss grains had a nucleation advantage in HSEN and HABN.The amount of Goss grains was the highest according to HABN,and it matched the experimental measurement.However,Goss grains lacked a size advantage across all mechanisms during the recrystallization process.展开更多
The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is o...The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronies, thermoelectric power generation and thermal imaging.展开更多
The melting and crystallization behaviors of poly(e-caprolactone) (PCL) ultra-thin films with thickness from 15 ran to 8 nm were studied by AFM technique equipped with a hot-stage in real-time. It was found that m...The melting and crystallization behaviors of poly(e-caprolactone) (PCL) ultra-thin films with thickness from 15 ran to 8 nm were studied by AFM technique equipped with a hot-stage in real-time. It was found that melting can erase the spherulitic structure for polymer film with high thickness. However, annealing above the melting point can not completely erase the tree-like structure for the thinner polymer film. Generally, the structure formation of thin polymer films of PCL is controlled not only by melting and crystallization but also by dewetting during thermal annealing procedures, and dewetting predominates in the structure formation of ultra-thin films. However, the presence of tree-like morphology at 75 ℃ may be due to the strong interaction between PCL and mica surface, which may stick the PCL chains onto the mica surface during thermal annealing process. Moreover, the growth of the dendrites was investigated and it was found that crystallization is followed from a dewetted sample, and the branches did not grow with the stems. The crystallization of polymer in the ultra- thin films is a diffusion-controlled process. Both melting and crystallization behaviors of PCL in thin films are influenced by film thickness.展开更多
基金Supported by the Fundamental Research Funds for the Central Universities(ZYGX2021J008)。
文摘A novel substrate integrated microstrip to ultra-thin cavity filter transition operating in the W-band is proposed in this letter.The structure is a new method of connecting microstrip circuits and waveguide filters,and this new structure enables a planar integrated transition from microstrip lines to ultra-thin cavity filters,thereby reducing the size of the transition structure and achieving miniaturization.The structure includes a conventional tapered microstrip transition structure,which guides the electromagnetic field from the microstrip line to the reduced-height dielectric-filled waveguide,and an air-filled matching cavity which is placed between the dielectric-filled waveguide and the ultra-thin cavity filter.The heights of the microstrip line,the dielectric-filled waveguide and the ultra-thin cavity filter are the same,enabling seamless integration within a planar radio-frequency(RF)circuit.To facilitate testing,mature finline transition structures are integrated at both ends of the microstrip line during fabrications.The simulation results of the fabricated microstrip to ultra-thin cavity filter transition with the finline transition structure,with a passband of 91.5-96.5 GHz,has an insertion loss of less than 1.9 dB and a return loss lower than-20 dB.And the whole structure has also been measured which achieves an insertion loss less than 2.6 dB and a return loss lower than-15 dB within the filter's passband,including the additional insertion loss introduced by the finline transitions.Finally,a W-band compact up-conversion module is designed,and the test results show that after using the proposed structure,the module achieves 95 dBc suppression of the 84 GHz local oscillator.It is also demonstrated that the structure proposed in this letter achieves miniaturization of the system integration without compromising the filter performance.
基金funded by the Youth Fund Project of GRINM(No.66922309)the National Natural Science Foundation of China(No.52301220)。
文摘The equimolar NbZrTi medium-entropy alloy(MEA)has attracted attention due to its excellent comprehensive mechanical properties.In this study,the designed body-centered cubic NbZrTiAl_(4)(atomic percent,at%)MEA by Al addition,having a superplastic extensibility of~5000%under cold rolling,enables directly fabricated ultrathin foils with a thickness down to~0.2 mm without any treatments.Particularly,the annealed NbZrTiAl_(4) MEA foils,containing a coherent nanoscale B2,exhibit an ultrahigh yield strength of up to~1130 MPa,which even surpasses the bulk counterpart,while maintaining a good fracture elongation of up to~14%.The Al addition induced a stronger solid solution strengthening and fine-grain strengthening in the foils.Complex dislocation interactions and dislocation–B2 interactions promoted a dynamical formation of dislocation bands,which yielded work-hardening ability and tensile ductility.These findings provide a novel strategy for the design of ultrathin refractory medium-entropy foils to break through their performance limits at ultrahigh temperatures and guide the design of high-performance lightweight foils for structural applications.
基金supported by the National Natural Science Foundation of China(Nos.51974196,52275361,and 52305406)the Key Projects of the National Natural Science Foundation of China(No.U22A20188)the Special Projects of the Central Government in Guidance of Local Science and Technology Development(YDZX20191400002149).
文摘The textured roll and polished roll were applied instead of the ground roll in a 20-high mill to conduct two-pass rolling of 316L stainless steel strip with thickness of 0.027 mm.After the two-pass rolling with the textured roll and polished roll(TPR),the surface roughness of the strip is dramatically reduced,and the surface topographical anisotropy index is diminished to 30.9%of the initial strip.Comparing with the strip rolled using the ground roll in both passes(GGR),the elongation of TPR rolled strip is obviously improved,and the mechanical property anisotropy is greatly weakened.The anisotropy index of tensile strength and elongation are 42.58%and 52.59%of that of GGR rolled strip,which is mainly attributed to the significant decrease of the texture intensity of the strip by TPR process.The results indicate that TPR process can obtain the stainless steel ultra-thin strip with smooth and uniform surface topography and good mechanical properties.
基金financial support from the National Natural Science Foundation of China(22439001,52172198,51902117)supported by the Innovation Fund of Wuhan National Laboratory for Optoelectronicsthe Analytical and Testing Center of Huazhong University of Science and Technology(HUST)for performing various characterizations。
文摘Modulating the interface between the electron transport layer(ETL)and perovskite to minimize interfacial recombination is pivotal for developing efficient and stable perovskite solar cells.Here,we introduce an ultra-thin ZrO_(2)insulating interface layer onto the inner surface of the mesoporous TiO_(2)ETL via the chemical bath deposition in the zirconium n-butoxide solution,which alters the interface characteristics between TiO_(2)and perovskite for the printable hole-conductor-free mesoscopic perovskite solar cells(p-MPSCs).The insulating ZrO_(2)interface layer reduces interface defects and suppresses interfacial non-radiative recombination.Furthermore,the ZrO_(2)interface layer improves the wettability of the mesoporous TiO_(2)ETL,which favors the crystallization of perovskite within the mesoporous scaffold.Meanwhile,the device performance presents thickness dependence on the interface layer.While increased thickness improves the open-circuit voltage,excessive thickness negatively impacts both the short-circuit current density and fill factor.Consequently,an improved power conversion efficiency of 19.9% was achieved for p-MPSCs with the ZrO_(2)interface layer at its optimized thickness.
文摘A novel mesa ultra-thin base AlGaAs/GaAs HBT is designed and fabricated with wet chemical selective etch technique and monitor electrode technique. It has a particular and obvious voltage-controlled NDR whose PVCR is larger than 120. By use of device simulation,the cause of NDR is that increasing collector voltage makes the ultrathin base reach through and the device transforms from a bipolar state to a bulk barrier state. In addition, the simulated cutoff frequency is about 60-80GHz.
文摘In many fields of high-tech industry the ultra-t hi n wall parts are employed. In this paper the experiments were carried out to dis cuss the surface microstructure of the camera’s guided drawtube by applying ult rasonic vibration cutting device to the traditional lathe. The influence rule of the cutting condition on the surface roughness was put forward, which was drawn by comparing the ultrasonic cutting with the common cutting by use of the cemen ted carbide tool and the polycrystalline diamond (PCD) tool. The test results sh owed that the ultrasonic cutting performs better than the common cutting in the same condition. According to the test results analyzing, the surface characteriz ation is influenced clearly by the rigidity of the acoustic system and the machi ne tool, as well the setting height of the tool tip. Otherwise, the dense regula r low frequency vibration ripples will be scraped on the machined surface. When the tool tip is set higher than the rotating center of the work piece by three t imes of the amplitude of ultrasonic vibration, the vibration ripples behave alig ht; they turn light and shade alternatively when the tool tip is lower than the rotating center of the work piece by three times of the amplitude of ultrasonic vibration. According to the test result analyzing, the following conclusions are put forward: 1) The surface roughness in ultrasonic cutting is better than that in common cutting. Under a one third critical cutting velocity, the value of th e surface roughness in ultrasonic cutting rise slightly along with the cutting v elocity, while in common cutting it decreases contrast to the cutting velocity; the curves of the surface roughness in ultrasonic cutting and common cutting see m to be alike, both increase along with the feed rate and the cutting depth, but the value in ultrasonic cutting is smaller in the same condition.2) The influen ce of the coolant on the surface roughness cannot be ignored. The kerosene can b e employed to improve the surface roughness in ultrasonic machining.3) In ultras onic cutting process of aluminum alloy ultra-thin wall work piece, the PCD tool performs better than the cemented carbide tools.4) The vibration ripples result from the not enough rigidity of the acoustic system and the improper setting he ight of the tool tip. The departure of the tool tip from the rotating center of the work piece to some extent causes the vibration ripples on the machined surfa ce.
基金financially supported by the National High Technology Research and Development Program of China(Grant No.2012AA03A505)
文摘In this study, high- and low-grade grain-oriented electrical steels were used as the initial materials to produce 0.08-mm-thick sheet with one-step cold-rolling method. Electron backscattering diffraction analysis technique and X-ray diffraction texture analysis technique were adopted to investigate the effect of initial Goss texture sharpness on texture evolution and magnetic properties of ultra-thin grain-oriented electrical steel. The results showed that primary recrystal- lization and secondary recrystallization were the main processes that occurred during annealing. The induced factors for secondary recrystallization of two grades samples were not Consistent. The high-grade samples presented texture induction mechanism, while the low-grade samples revealed strong surface-energy induction mechanism. The initial Goss texture sharpness had a great impact on texture evolution and magnetic properties of ultra-thin grain-oriented electrical steel. The Goss texture component formed after primary recrystallization was stronger, and better magnetic properties were obtained at low frequencies. For low-grade samples, secondary recrystallization enhanced the intensity of Goss texture, and both grain size and texture contributed to better high-frequency magnetic properties after secondary recrystallization. By controlling the annealing process, the magnetic properties of low-grade products could be significantly improved, thus achieving conversion from low-grade to high-grade products.
基金financially supported by the National Natural Science Foundation of China(Grants 52072165,52070092,51662031)。
文摘Oxygen vacancy plays vital roles in regulating the electronic and charge distribution of the oxygen deficient materials.Herein,abundant oxygen vacancies are created during assembling the two-dimensional(2D)ultra-thin Bi_(2)MoO_(6) nanoflakes into three dimensional(3D)Bi_(2)MoO_(6) nanospheres,resulting in significantly improved performance for photocatalytical conversion of CO_(2) into liquid hydrocarbons.The increased performance is contributed by two primary sites,namely the abundant oxygen vacancy and the exposed molybdenum(Mo)atom induced by oxygen-migration,as revealed by the theoretical calculation.The oxygen vacancy(Ov)and uncovered Mo atom serving as dual binding sites for trapping CO_(2) molecules render the synchronous fixation-reduction process,resulting in the decline of activation energy for CO_(2) reduction from 2.15 eV on bulk Bi_(2)MoO_(6) to 1.42 eV on Ov-rich Bi_(2)MoO_(6).Such a striking decrease in the activation energy induces the efficient selective generation of liquid hydrocarbons,especially the methanol(C_(2)H_(5) OH)and ethanol(CH_(3) OH).The yields of CH_(3) OH and C_(2)H_(5) OH over the optimal Ov-Bi_(2)MoO_(6) is high up to 106.5 and 10.3μmol g^(-1) respectively,greatly outperforming that on the Bulk-Bi_(2)MoO_(6).
基金National Natural Science Foundation of China,Grant/Award Numbers:52004338,51904342,52074359Guangdong Provincial Department of Natural Resources,Grant/Award Number:2020-011Hunan Provincial Natural Science Foundation,Grant/Award Number:2020JJ5696。
文摘Carbonaceous materials have been regarded as highly promising anode candidates for potassium storage with their cost-effectiveness and environmental benignity.However,low specific capacity and difficulty in large-scale synthesis largely hinder their further development.Herein,a thermal-induced potassium–carbon alloy phase(K_(x)C_(y))with the expanded interlayer spacing strategy is first put forward.Through in situ high-temperature X-ray diffraction,a K_(2)C_(2) phase is evoked by thermal energy during the in-situ carbonization process of carbon quantum dots intermediate derived from potassium-containing precursors,whereas no lithium or sodium–carbon alloy phase is observed from lithium/sodium-containing precursors.The asobtained ultra-thin carbon nanosheets achieve adjustable layer spacing,preparation in bulk,delivering reversible potassium storage of 403.4 mAh g^(−1) at 100 mA g^(−1) and 161.2 mAh g^(−1) even at 5.0 A g^(−1),which is one of the most impressive K-storage performances reported so far with great potential application.Furthermore,the assembled potassium-ion hybrid capacitor by combining the impressive CFMs-900 anode with the three-dimensional framework-activated carbon delivers a high energy-power density of 251.7 Wh kg^(−1) at 250Wkg^(−1) with long-term stability.This study opens a scalable avenue to realize the expanded interlayer spacing,which can be extended to other multicarboxyl potassium salts and can provide approach for the design of high-performance carbon anode materials for potassium storage.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11179003 and 10975164)
文摘Monte Carlo simulations reveal considerable straggling of energy loss by the same ions with the same energy in fully-depleted silicon-on-insulator (FDSOI) devices with ultra-thin sensitive silicon layers down to 2.5 rim. The absolute straggling of deposited energy decreases with decreasing thickness of the active silicon layer. While the relative straggling increases gradually with decreasing thickness of silicon films and exhibits a sharp rise as the thickness of the silicon film descends below a threshold value of 50 nm, with the dispersion of deposited energy ascending above ~10%. Ion species and energy dependence of the energy-loss straggling are also investigated. For a given beam, the dispersion of deposited energy results in large uncertainty on the actual linear energy transfer (LET) of incident ions, and thus single event effect (SEE) responses, which pose great challenges for traditional error rate prediction methods.
文摘The Hi-B silicon steels were cold rolled by cross shear rolling (CSR) with different mismatch speed ratio(MSR)s and conventional rolling(CR) respectively, followed by primary recrystallization annealing. The effects of MSR and annealing temperature on magnetic properties of ultra-thin grain oriented silicon steel were analyzed. Experimental results show that, with the increase of MSR, the magnetic properties can be remarkably improved. The higher the annealing temperature is, the higher the magnetic induction and the lower the iron loss in ultra-thin silicon steel is.
基金supported by the National Key R&D Program of China(No.2018YFE0203400)the Science and Technology plan project of Shenzhen(JCYJ20190808120001755)+1 种基金the National Natural Science Foundation of China(No.62074102)the Key Project of Department of Education of Guangdong Province(No.2018KZDXM059)China。
文摘In recent years,Cu_(2)ZnSnS_(4)(CZTS)semiconductor materials have received intensive attention in the field of thin-film solar cells owing to its non-toxic and low-cost elements.In this work,double-pressure sputtering technology is applied to obtain highly efficient and ultra-thin(-450 nm)pure Cu_(2)ZnSnS_(4)(CZTS)solar cell.Using mixed materials with sulfides and copper powder as a quaternary target via spark plasma sintering(SPS)method and adopting double-layer sputtering(high+low pressure),a highly adhesive and large-grained CZTS thin film is achieved.As a result,the damage to the surface of Mo contact is decreased so that the reflectivity of incident light can be improved.Moreover,the composition of CZTS film was more uniform and the secondary phase separation at the Mo interface was reduced.Therefore,the interface defect state and deep level defect density in corresponding device with double-pressure is reduced and the ratio of depletion thickness to absorption layer thickness can reached to 0.58,which promoted the collection of photogenerated carriers.Finally,an efficiency of 9.3%for ultra-thin(~450 nm)CZTS film solar cell is obtained.
基金the National Natural Science Foundation of China(No.5210010403)the China Postdoctoral Science Foundation(No.2021M690345)the Swedish Foundation for International Cooperation in Research and Higher Education(STINT project for Swedish-China collaboration,No.CH2017-7255)。
文摘Electrochemical behaviour and passive film characteristics of an ultra-thin 316 L foil with a thickness of20μm in 3.5 wt.%NaCl solution were investigated using multiple techniques,focusing on the effect of microstructure,the applied potential,and the pH of the solution.The microstructure contains mainly fine grains(~4μm)with high-angle boundaries and preferential orientation of(220),and no MnS inclusion was detected.The electrochemical measurements show a significantly higher breakdown potential and lower passive current density for the 316 L foil than traditional wrought 316 L.The surface analyses using angle-resolved X-ray photoelectron spectroscopy(ARXPS)and time-of-flight secondary ion mass spectroscopy(TOF-SIMS)reveal that,compared to the wrought material,both the inner and out parts of the passive film on the 316 L foil are more enriched in Cr-and Mo-oxides.The microstructure favourable for elemental diffusion and the absence of MnS inclusion facilitate the formation of a continuous compact Cr-and Mo-rich passive film,which effectively retards corrosion in NaCl solution and remains stable in acidic solution(pH 2)or at high polarised potential up to 600 mV vs Ag/AgCl.
基金sponsored by the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2017233)the National Natural Science Foundation of China (No. 51472249)+1 种基金the Innovation Project of Institute of Metal Research (No. 2015-ZD04)the National Natural Science Foundation of China Research Fund for International Young Scientists (No.51750110515).
文摘Structural metallic materials with excellent functional performance and lightweight features have always been the goal of material scientists’ pursuit.In this work,laminated metal composites of different thicknesses(less than 0.4 mm) composed of structural materials with great differences in deformation ability were successfully fabricated via a novel processing procedure.Ultra-high strength and excellent soft magnetic properties were combined perfectly in the ultra-thin and super-light laminated metal composite strips due to unique structural design and essential attributes of the initial materials.These results emphasize the significant potential application value of the ultra-thin laminated metal composites in the field of structural and functional integration.
文摘In the paper, the experimental researches were carr ie d out to discuss the roundness forming rule and the influence of cutting paramet ers on roundness by ultrasonic vibration cutting of the camera’s guiding drawtu be with 47.75 mm diameter and 0.6~1.5 mm wall thickness. The research results s h ow that the roundness error of ultra-thin wall parts in ultrasonic vibration cu tting is only one third of that in common cutting. The relations between the rou ndness error and the cutting parameters behave as: (1) The roundness error in co mmon cutting decreases gradually with the rise of cutting speed, while in ultras onic cutting, the roundness changes not obviously till the cutting speed is up t o a value, which is nearly equal to one third of the critical velocity. Then the roundness of workpiece will begin to increase slowly. (2) The roundness error i ncreases along with the feed rate both in common cutting and ultrasonic cutting. (3) Within the range of cutting depth in experiment, the influence of cutting d epth on the roundness error is more obvious in common cutting than that in ultra sonic vibration cutting. The conclusions are useful in machining such precise ul tra-thin wall parts. According to the tests, the following conclusions can be o btained: 1) Compared with common cutting, ultrasonic cutting can decrease effect ively roundness error of the workpiece. Under the same condition, the roundness error of the ultra-thin wall part in ultrasonic turning is about one third of t hat in common cutting. 2) In common cutting, cutting depth and feed rate have mu ch influence on the roundness and the influence of cutting velocity is little. W hile in ultrasonic cutting, the roundness was influenced heavily only when feed rate is more than 0.1 mm/r and cutting speed is more than 1/3 of the critical ro tation speed, cutting depth has little influence on the roundness in the experim ent. 3) Kerosene-oil is an optimum cutting fluid in machining ultra-thin wall workpiece. 4) To machine the ultra-thin wall precision part, ultrasonic cutting is the perfect method which can decrease the roundness error effectively an d ensure high quality of the surface.
基金Project supported by the National Natural Science Foundation of China(Grant No.61372034)
文摘Circularly polarized (CP) lens antenna has been applied to numerous wireless communication systems based on its unique advantages such as high antenna gain, low manufacturing cost, especially stable data transmission between the transmitter and the receiver. Unfortunately, current available CP lens antennas mostly suffer from high profile, low aperture efficiency as well as complex design. In this paper, we propose an ultra-thin CP lens antenna based on the designed single- layered Pancharatnam-Berry (PB) transparent metasurface with focusing property. The PB metasurface exhibits a high transmissivity, which ensures a high efficiency of the focusing property. Launched the metasurface with a CP patch antenna at its focal point, a low-profile lens antenna is simulated and measured. The experimental results show that our lens antenna exhibits a series of advantages including high radiation gain of 20.7 dB, aperture efficiency better than 41.3%, and also narrow half power beam width (HPBW) of 13°at about 14GHz. Our finding opens a door to realize ultra-thin transparent metasurface with other functionalities or at other working frequencies.
文摘The conduction mechanism of stress induced leakage current (SILC) through 2nm gate oxide is studied over a gate voltage range between 1.7V and stress voltage under constant voltage stress (CVS). The simulation results show that the SILC is formed by trap-assisted tunnelling (TAT) process which is dominated by oxide traps induced by high field stresses. Their energy levels obtained by this work are approximately 1.9eV from the oxide conduction band, and the traps are believed to be the oxygen-related donor-like defects induced by high field stresses. The dependence of the trap density on stress time and oxide electric field is also investigated.
基金The authors acknowledge the financial support from the National Key Research and Development Program of China(No.2017YFB0903901).
文摘A Monte Carlo Potts model was developed to simulate the recrystallization process of a cold-rolled ultra-thin grain-oriented silicon steel.The orientation and image quality data from electron backscatter diffraction measurements were used as input information for simulation.Three types of nucleation mechanisms,namely,random nucleation,high-stored-energy site nucleation(HSEN),and high-angle boundary nucleation(HABN),were considered for simulation.In particular,the nucleation and growth behaviors of Goss-oriented({011}<100>)grains were investigated.Results showed that Goss grains had a nucleation advantage in HSEN and HABN.The amount of Goss grains was the highest according to HABN,and it matched the experimental measurement.However,Goss grains lacked a size advantage across all mechanisms during the recrystallization process.
基金Supported by the National Basic Research Program of China under Grant Nos 2013CB921900 and 2014CB920900the National Natural Science Foundation of China under Grant No 11374021)(S.Yan,Z.Xie,J.-H,Chen)+1 种基金support from the Elemental Strategy Initiative conducted by the MEXT,Japana Grant-in-Aid for Scientific Research on Innovative Areas"Science of Atomic Layers"from JSPS
文摘The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10 V/nm to 0.83 V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronies, thermoelectric power generation and thermal imaging.
基金supported by the National Natural Science Foundation of China for General (Nos. 50303017,50373044),Major (Nos. 20490220, 50390090)the Special Funds for Major State Basic Research Projects(No. 2003CB615600)
文摘The melting and crystallization behaviors of poly(e-caprolactone) (PCL) ultra-thin films with thickness from 15 ran to 8 nm were studied by AFM technique equipped with a hot-stage in real-time. It was found that melting can erase the spherulitic structure for polymer film with high thickness. However, annealing above the melting point can not completely erase the tree-like structure for the thinner polymer film. Generally, the structure formation of thin polymer films of PCL is controlled not only by melting and crystallization but also by dewetting during thermal annealing procedures, and dewetting predominates in the structure formation of ultra-thin films. However, the presence of tree-like morphology at 75 ℃ may be due to the strong interaction between PCL and mica surface, which may stick the PCL chains onto the mica surface during thermal annealing process. Moreover, the growth of the dendrites was investigated and it was found that crystallization is followed from a dewetted sample, and the branches did not grow with the stems. The crystallization of polymer in the ultra- thin films is a diffusion-controlled process. Both melting and crystallization behaviors of PCL in thin films are influenced by film thickness.