为了考察UV/H_2O_2-活性炭过滤对水体中消毒副产物和条件致病菌的控制效果,采用原水-加氯、原水-活性炭过滤-加氯以及原水-UV/H_2O_2-活性炭过滤-加氯消毒进行了对比研究。对不同处理出水中溶解性有机碳(DOC)、生物可降解有机碳(BDOC)...为了考察UV/H_2O_2-活性炭过滤对水体中消毒副产物和条件致病菌的控制效果,采用原水-加氯、原水-活性炭过滤-加氯以及原水-UV/H_2O_2-活性炭过滤-加氯消毒进行了对比研究。对不同处理出水中溶解性有机碳(DOC)、生物可降解有机碳(BDOC)、有机物不同结构组成、消毒副产物、总细菌16S r RNA、三磷酸腺苷(ATP)及条件致病菌等相关指标进行测定分析。结果表明,UV/H_2O_2-活性炭过滤通过去除有机物中富里酸和腐殖酸类物质可以有效控制DOC浓度和后续消毒过程中消毒副产物三卤甲烷和卤乙酸类物质特别是三氯甲烷、二氯乙酸和三氯乙酸的生成。另外,UV/H_2O_2高级氧化也可以有效灭活颗粒黏附态和自由悬浮态的微生物,而UV/H_2O_2-活性炭过滤可以很好地控制BDOC浓度,再通过后续加氯消毒后微生物再生长能力弱,微生物活性也得到有效抑制,该工艺可以很好地控制微生物包括条件致病菌嗜肺军团菌和鸟分枝杆菌的生长。UV/H_2O_2-活性炭过滤可以很好地控制后续加氯消毒过程中消毒副产物的生成和条件致病菌的生长,有一定的应用前景。展开更多
Tri(2-chloroethyl) phosphate(TCEP) with the initial concentration of 5 mg/L was degraded by UV/H2O2 oxidation process. The removal rate of TCEP in the UV/H2O2 system was 89.1% with the production of Cl-and PO4^3- of 0...Tri(2-chloroethyl) phosphate(TCEP) with the initial concentration of 5 mg/L was degraded by UV/H2O2 oxidation process. The removal rate of TCEP in the UV/H2O2 system was 89.1% with the production of Cl-and PO4^3- of 0.23 and 0.64 mg/L. The removal rate of total organic carbon of the reaction was 48.8% and the pH reached 3.3 after the reaction. The oxidative degradation process of TCEP in the UV/H2O2 system obeyed the first order kinetic reaction with the apparent rate constant of 0.0025 min^-1( R^2 = 0.9788). The intermediate products were isolated and identified by gas chromatography-mass spectrometer. The addition reaction of HO · and H2O and the oxidation reaction with H2O2 were found during the degradation pathway of 5 mg/L TCEP in the UV/H2O2 system. For the first time, environment risk was estimated via the "ecological structure activity relationships" program and acute and chronic toxicity changes of intermediate products were pointed out. The luminescence inhibition rate of photobacterium was used to evaluate the acute toxicity of intermediate products. The results showed that the toxicity of the intermediate products increased with the increase of reaction time, which may be due to the production of chlorine compounds. Some measures should be introduced to the UV/H2O2 system to remove the highly toxic Cl-containing compounds, such as a nanofiltration or reverse osmosis unit.展开更多
The degradation of atrazine (ATZ),sulfamethoxazole (SMX) and metoprolol (MET) in flowthrough VUV/UV/H2O2reactors was investigated with a focus on the effects of H2O2dosage and reactor internal diameter (ID).Results sh...The degradation of atrazine (ATZ),sulfamethoxazole (SMX) and metoprolol (MET) in flowthrough VUV/UV/H2O2reactors was investigated with a focus on the effects of H2O2dosage and reactor internal diameter (ID).Results showed that the micropollutants were degraded efficiently in the flow-through VUV/UV/H2O2reactors following the pseudo first-order kinetics (R2>0.92).However,the steady-state assumption (SSA) kinetic model being vital in batch reactors was found invalid in flow-through reactors where fluid mixing was less sufficient.With the increase of H2O2dosage,the ATZ removal efficiency remained almost constant while the SMX and MET removal was enhanced to different extents,which could be explained by the different reactivities of the pollutants towards HO·.A larger reactor ID resulted in lower degradation rate constants for all the three pollutants on account of the lower average fluence rate,but the change in energy efficiency was much more complicated.In reality,the electrical energy per order (EEO) of the investigated VUV/UV/H2O2treatments ranged between 0.14–0.20,0.07–0.14 and 0.09–0.26 k Wh/m3/order for ATZ,SMX and MET,respectively,with the lowest EEOfor each pollutant obtained under varied H2O2dosages and reactor IDs.This study has demonstrated the efficiency of VUV/UV/H2O2process for micropollutant removal and the inadequacy of the SSA model in flow-through reactors,and elaborated the influential mechanisms of H2O2dosage and reactor ID on the reactor performances.展开更多
文摘针对含溴离子(Br-)的上海某水厂滤后水的高级氧化处理,考察了紫外/过氧化氢(UV/H_2O_2)技术对UV254和总有机碳(TOC)的削减效率、控制消毒副产物溴酸根(Br O-3)和三卤甲烷(THMs)的生成情况,同时研究了水中溴离子(Br-)浓度的改变对UV/H_2O_2处理效果的影响.结果表明,UV/H_2O_2处理工艺不产生Br O-3;500 m J·cm-2的UV剂量和5 mg·L-1H_2O_2投加量下,出水UV254和TOC分别降低了35%和21%;后续氯消毒过程中的THMs生成势随H_2O_2投加量的增加显著降低,500 m J·cm-2的UV剂量下,H_2O_2投加量为5 mg·L-1和10 mg·L-1时,THMs生成势的削减率分别为49.4%和79.9%;水中Br-浓度的改变不影响UV/H_2O_2工艺的运行效果;相比UV,UV/H_2O_2还可使9种农药的降解率提高50%—85%.因此,UV/H_2O_2在含Br-水源水深度处理方面有着较好的应用前景.
文摘为了考察UV/H_2O_2-活性炭过滤对水体中消毒副产物和条件致病菌的控制效果,采用原水-加氯、原水-活性炭过滤-加氯以及原水-UV/H_2O_2-活性炭过滤-加氯消毒进行了对比研究。对不同处理出水中溶解性有机碳(DOC)、生物可降解有机碳(BDOC)、有机物不同结构组成、消毒副产物、总细菌16S r RNA、三磷酸腺苷(ATP)及条件致病菌等相关指标进行测定分析。结果表明,UV/H_2O_2-活性炭过滤通过去除有机物中富里酸和腐殖酸类物质可以有效控制DOC浓度和后续消毒过程中消毒副产物三卤甲烷和卤乙酸类物质特别是三氯甲烷、二氯乙酸和三氯乙酸的生成。另外,UV/H_2O_2高级氧化也可以有效灭活颗粒黏附态和自由悬浮态的微生物,而UV/H_2O_2-活性炭过滤可以很好地控制BDOC浓度,再通过后续加氯消毒后微生物再生长能力弱,微生物活性也得到有效抑制,该工艺可以很好地控制微生物包括条件致病菌嗜肺军团菌和鸟分枝杆菌的生长。UV/H_2O_2-活性炭过滤可以很好地控制后续加氯消毒过程中消毒副产物的生成和条件致病菌的生长,有一定的应用前景。
基金supported by the National Nature Science Foundation of China (No. 21777067)the Primary Research&Development Plan of Jiangsu Province (No. BE2019679)+1 种基金Open Fund of National Key Laboratory of Collaborative Control and Remediation of Soil and Water Pollution for Environmental Protection (No. GHBK-001)the Open Fund of the State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration,Northeast Normal University (No. 130028903)。
文摘Tri(2-chloroethyl) phosphate(TCEP) with the initial concentration of 5 mg/L was degraded by UV/H2O2 oxidation process. The removal rate of TCEP in the UV/H2O2 system was 89.1% with the production of Cl-and PO4^3- of 0.23 and 0.64 mg/L. The removal rate of total organic carbon of the reaction was 48.8% and the pH reached 3.3 after the reaction. The oxidative degradation process of TCEP in the UV/H2O2 system obeyed the first order kinetic reaction with the apparent rate constant of 0.0025 min^-1( R^2 = 0.9788). The intermediate products were isolated and identified by gas chromatography-mass spectrometer. The addition reaction of HO · and H2O and the oxidation reaction with H2O2 were found during the degradation pathway of 5 mg/L TCEP in the UV/H2O2 system. For the first time, environment risk was estimated via the "ecological structure activity relationships" program and acute and chronic toxicity changes of intermediate products were pointed out. The luminescence inhibition rate of photobacterium was used to evaluate the acute toxicity of intermediate products. The results showed that the toxicity of the intermediate products increased with the increase of reaction time, which may be due to the production of chlorine compounds. Some measures should be introduced to the UV/H2O2 system to remove the highly toxic Cl-containing compounds, such as a nanofiltration or reverse osmosis unit.
基金supported by the National Natural Science Foundation of China(No.51908536)the Ministry of Science and Technology of China(No.2018YFE0204103)。
文摘The degradation of atrazine (ATZ),sulfamethoxazole (SMX) and metoprolol (MET) in flowthrough VUV/UV/H2O2reactors was investigated with a focus on the effects of H2O2dosage and reactor internal diameter (ID).Results showed that the micropollutants were degraded efficiently in the flow-through VUV/UV/H2O2reactors following the pseudo first-order kinetics (R2>0.92).However,the steady-state assumption (SSA) kinetic model being vital in batch reactors was found invalid in flow-through reactors where fluid mixing was less sufficient.With the increase of H2O2dosage,the ATZ removal efficiency remained almost constant while the SMX and MET removal was enhanced to different extents,which could be explained by the different reactivities of the pollutants towards HO·.A larger reactor ID resulted in lower degradation rate constants for all the three pollutants on account of the lower average fluence rate,but the change in energy efficiency was much more complicated.In reality,the electrical energy per order (EEO) of the investigated VUV/UV/H2O2treatments ranged between 0.14–0.20,0.07–0.14 and 0.09–0.26 k Wh/m3/order for ATZ,SMX and MET,respectively,with the lowest EEOfor each pollutant obtained under varied H2O2dosages and reactor IDs.This study has demonstrated the efficiency of VUV/UV/H2O2process for micropollutant removal and the inadequacy of the SSA model in flow-through reactors,and elaborated the influential mechanisms of H2O2dosage and reactor ID on the reactor performances.