Accurate ultra-short-term prediction of the Earth rotation parameters(ERP)holds paramount impor-tance for real-time applications,particularly in reference frame conversion.Among them,diurnal rota-tion(UT1-UTC)which ca...Accurate ultra-short-term prediction of the Earth rotation parameters(ERP)holds paramount impor-tance for real-time applications,particularly in reference frame conversion.Among them,diurnal rota-tion(UT1-UTC)which cannot be directly estimated through Global Navigation Satellite System(GNSS)techniques,significantly affects the rapid and ultra-rapid orbit determination of GNsS satellites.Pres-ently,the traditional LS(least squares)+AR(autoregressive)and LS+MAR(multivariate autoregressive)hybrid methods stand as primary approaches for UT1-UTC ultra-short-term predictions(1-10 days).The LS+MAR hybrid method relies on the UT1-UTC and LOD(length of day)series.However,the correlation between LOD and first-order-difference UT1-UTC is stronger than that between LOD and UT1-UTC.In light of this,and with the aid of the first-order-difference UT1-UTC,we propose an enhanced LS+MAR hybrid method to UT1-UTC ultra-short-term prediction.By using the UT1-UTC and LOD data series of the IERS(International Earth Rotation and Reference Systems Service)EOP 14 C04 product,we conducted a thorough analysis and evaluation of the improved method's prediction performance compared to the traditional LS+AR and LS+MAR hybrid methods.According to the numerical results over more than 210 days,they demonstrate that,when considering the correlation information between the LoD and the first-order-difference UT1-UTC,the mean absolute errors(MAEs)of the improved LS+MAR hybrid method range from 21 to 934μs in 1-10 days predictions.In comparison to the traditional LS+AR hybrid method,the MAEs show a reduction of 7-53μs in 1-10 days predictions,with corresponding improvement percentages ranging from 1 to 28%.Similarly,when compared to the traditional LS+MAR hybrid method,the MAEs have a reduction of 5-42μs in 1-10 days predictions,with corresponding improvement percentages ranging from 4-20%.Additionally,when aided by GNSS-derived LOD data series,the MAEs of improved LS+MAR hybrid method experience further reduction.展开更多
This study investigated if the variation in the effect of anti-cholesterol(AC)treatment on individual mice are related to gut microbiome composition.The bile salt hydrolase(BSH)activity of 23 commercial fermented milk...This study investigated if the variation in the effect of anti-cholesterol(AC)treatment on individual mice are related to gut microbiome composition.The bile salt hydrolase(BSH)activity of 23 commercial fermented milk products was examined to select a fermented milk product for AC treatment.Mice were fed to different diets for 6 weeks:high-fat(60%of total calories from fat;D1),high-dietary fibre(20%cellulose;D2),and low-fat(17.2%of total calories from fat;D3)diets to change their gut microbiomes.Subsequently,faecal microbiome was transplanted(FMT)into mice treated with high cholesterol diet contained 2%cholesterol,followed by AC or non-AC(sterile tap water,STW)treatments.Control groups with normal(NC)and highcholesterol diets(PC)were prepared for both AC and STW treatment.All experimental groups were subjected to serum and liver cholesterol,cholesterol metabolism-related(CMR)gene expression,and intestinal microbiome analyses.D3-FMT mice showed the most significant enhancements in cholesterol ratio and decreased hepatic cholesterol levels with AC treatment.Moreover,upregulation of the Cyp7a1 gene expression was observed in this group.Furthermore,the intestinal microbiome analysis indicated higher abundances of BSH-producing Eubacterium,Bifidobacterium,and Parabacteroides in the D3-FMT+AC group compare to others,potentially contributing to increased bile acid synthesis.展开更多
肠道病毒A71型(Enterovirus A71,EV-A71)是手足口病的重要病原体,为研究EV-A71感染人扁桃体上皮细胞后对细胞凋亡和细胞周期的影响,确定ERK1/2、JNK1/2、PI3K/Akt和含半胱氨酸的天冬氨酸蛋白水解酶(Cysteinyl aspartate specific protei...肠道病毒A71型(Enterovirus A71,EV-A71)是手足口病的重要病原体,为研究EV-A71感染人扁桃体上皮细胞后对细胞凋亡和细胞周期的影响,确定ERK1/2、JNK1/2、PI3K/Akt和含半胱氨酸的天冬氨酸蛋白水解酶(Cysteinyl aspartate specific proteinase,Caspase)的作用,本文以人扁桃体上皮细胞系UT-SCC-60B为细胞模型,CCK-8试剂盒检测EV-A71对UT-SCC-60B的抑制率、流式细胞仪检测EV-A71感染组和抑制剂处理组的凋亡和细胞周期、Caspase活力检测试剂盒测定Caspase-3,Caspase-8,Caspase-9活力。EV-A71以感染剂量和感染时间依赖方式抑制UT-SCC-60B增殖;EV-A71感染致UT-SCC-60B发生细胞凋亡,抑制ERK1/2、JNK1/2和PI3K/Akt能够降低UT-SCC-60B细胞凋亡比例;EV-A71感染UT-SCC-60B后发生S期阻滞,抑制ERK1/2、JNK1/2、PI3K/Akt和Caspase阻止UT-SCC-60B发生S期阻滞;EV-A71感染UT-SCC-60B能够活化Caspase-3,Caspase-8,Caspase-9且ERK1/2、JNK1/2和PI3K/Akt调控Caspase-3,Caspase-8,Caspase-9活力。因此,EV-A71能够导致人扁桃体上皮细胞UT-SCC-60B发生凋亡和S期阻滞,并且ERK1/2、JNK1/2、PI3K/Akt和Caspase参与凋亡和S期阻滞的调控。展开更多
基金supported by China Natural Science Fund,China(No.42004016)the science and technology innovation Program of Hunan Province,China(No.2023RC3217)+1 种基金Research Foundation of the Department of Natural Resources of Hunan Province(Grant No:20240105CH)HuBei Natural Science Fund,China(No.2020CFB329).
文摘Accurate ultra-short-term prediction of the Earth rotation parameters(ERP)holds paramount impor-tance for real-time applications,particularly in reference frame conversion.Among them,diurnal rota-tion(UT1-UTC)which cannot be directly estimated through Global Navigation Satellite System(GNSS)techniques,significantly affects the rapid and ultra-rapid orbit determination of GNsS satellites.Pres-ently,the traditional LS(least squares)+AR(autoregressive)and LS+MAR(multivariate autoregressive)hybrid methods stand as primary approaches for UT1-UTC ultra-short-term predictions(1-10 days).The LS+MAR hybrid method relies on the UT1-UTC and LOD(length of day)series.However,the correlation between LOD and first-order-difference UT1-UTC is stronger than that between LOD and UT1-UTC.In light of this,and with the aid of the first-order-difference UT1-UTC,we propose an enhanced LS+MAR hybrid method to UT1-UTC ultra-short-term prediction.By using the UT1-UTC and LOD data series of the IERS(International Earth Rotation and Reference Systems Service)EOP 14 C04 product,we conducted a thorough analysis and evaluation of the improved method's prediction performance compared to the traditional LS+AR and LS+MAR hybrid methods.According to the numerical results over more than 210 days,they demonstrate that,when considering the correlation information between the LoD and the first-order-difference UT1-UTC,the mean absolute errors(MAEs)of the improved LS+MAR hybrid method range from 21 to 934μs in 1-10 days predictions.In comparison to the traditional LS+AR hybrid method,the MAEs show a reduction of 7-53μs in 1-10 days predictions,with corresponding improvement percentages ranging from 1 to 28%.Similarly,when compared to the traditional LS+MAR hybrid method,the MAEs have a reduction of 5-42μs in 1-10 days predictions,with corresponding improvement percentages ranging from 4-20%.Additionally,when aided by GNSS-derived LOD data series,the MAEs of improved LS+MAR hybrid method experience further reduction.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2019R1A2C2004356).
文摘This study investigated if the variation in the effect of anti-cholesterol(AC)treatment on individual mice are related to gut microbiome composition.The bile salt hydrolase(BSH)activity of 23 commercial fermented milk products was examined to select a fermented milk product for AC treatment.Mice were fed to different diets for 6 weeks:high-fat(60%of total calories from fat;D1),high-dietary fibre(20%cellulose;D2),and low-fat(17.2%of total calories from fat;D3)diets to change their gut microbiomes.Subsequently,faecal microbiome was transplanted(FMT)into mice treated with high cholesterol diet contained 2%cholesterol,followed by AC or non-AC(sterile tap water,STW)treatments.Control groups with normal(NC)and highcholesterol diets(PC)were prepared for both AC and STW treatment.All experimental groups were subjected to serum and liver cholesterol,cholesterol metabolism-related(CMR)gene expression,and intestinal microbiome analyses.D3-FMT mice showed the most significant enhancements in cholesterol ratio and decreased hepatic cholesterol levels with AC treatment.Moreover,upregulation of the Cyp7a1 gene expression was observed in this group.Furthermore,the intestinal microbiome analysis indicated higher abundances of BSH-producing Eubacterium,Bifidobacterium,and Parabacteroides in the D3-FMT+AC group compare to others,potentially contributing to increased bile acid synthesis.
文摘肠道病毒A71型(Enterovirus A71,EV-A71)是手足口病的重要病原体,为研究EV-A71感染人扁桃体上皮细胞后对细胞凋亡和细胞周期的影响,确定ERK1/2、JNK1/2、PI3K/Akt和含半胱氨酸的天冬氨酸蛋白水解酶(Cysteinyl aspartate specific proteinase,Caspase)的作用,本文以人扁桃体上皮细胞系UT-SCC-60B为细胞模型,CCK-8试剂盒检测EV-A71对UT-SCC-60B的抑制率、流式细胞仪检测EV-A71感染组和抑制剂处理组的凋亡和细胞周期、Caspase活力检测试剂盒测定Caspase-3,Caspase-8,Caspase-9活力。EV-A71以感染剂量和感染时间依赖方式抑制UT-SCC-60B增殖;EV-A71感染致UT-SCC-60B发生细胞凋亡,抑制ERK1/2、JNK1/2和PI3K/Akt能够降低UT-SCC-60B细胞凋亡比例;EV-A71感染UT-SCC-60B后发生S期阻滞,抑制ERK1/2、JNK1/2、PI3K/Akt和Caspase阻止UT-SCC-60B发生S期阻滞;EV-A71感染UT-SCC-60B能够活化Caspase-3,Caspase-8,Caspase-9且ERK1/2、JNK1/2和PI3K/Akt调控Caspase-3,Caspase-8,Caspase-9活力。因此,EV-A71能够导致人扁桃体上皮细胞UT-SCC-60B发生凋亡和S期阻滞,并且ERK1/2、JNK1/2、PI3K/Akt和Caspase参与凋亡和S期阻滞的调控。